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It is shown that the Callan-Gross sum rules for electroproduction fail in perturbation
theory. Nonperturbative lepton annihilation sum rules are derived. The inapplicability
of perturbation theory is traced to the breakdown of the Johnson-Low-Bjorken high-ener-
gy theorem.

The recent work of Bjorken' and Callan and
Gross' (CG) concerning the behavior of total
cross sections for electroproduction off protons
at high energies had indicated the feasibility of
determining the constituents of the electromag-
netic current in terms of basic fields. CG find
that if the current is bilinear in quark fields, the
longitudinal cross section satisfies

llm f 0 =0,
oo2

where q' is the momentum transfer. In the above
limit &u = -q'/v is held fixed, where v =P ~ q and P
is the proton momentum. On the other hand, if
the current is bilinear in spinless boson fields or
proportional to a vector field, then the trans-
verse cross section oT vanishes asymptotically
at fixed co,

lim @20 = Q.

q
2

These results follow from the tensor structure
of the object

C . . (p) = jd x (p I li.(x, O), Z. (0) ll p), (3)

where the equal-time commutator arises from an
application of the Johnson, Low, ' and Bjorken'
(JLB) high-energy theorem to the time-ordered
product of two currents.

In the case of the quark model, CG determine
the tensor structure of (3) by appeal to equations
of motion and equal-time commutation relations
for the unrenormalized quark fields out of which
the current is constructed. They assert that for
scalar, pseudoscalar, or vector interactions
Cf&(p) has the form

C. . (p) =(5..p'-p. p. )A+5. .B, (4)
zg 8' i j ij

where A. and 8 are Lorentz scalars, hence inde-
pendent of p'.

We have checked the CG result (1) in perturba-
tion theory as well as in a Bethe-Salpeter summa-

tion for the above models. It is found that (1)
does not hold. The reason for this has been
traced to the fact that the JLB high-energy theo-
rem is not satisfied in perturbation theory. In

particular the tensor structure (4), as deter-
mined by formal manipulation with unrenormal-
ized fields, does not coincide with the tensor
structure of the high-energy limit of the appropri-
ate T product. This in turn is a consequence of
the divergences of the unrenormalized theory.
The structure for Cfj (p), which we obtain by ex-
plicitly calculating fdx e~q' x(p lT [J&(x),J (0)]lp)
and taking the high-energy limit, is of the form
(4), except A is logarithmically divergent, while
B is finite and proportional toy . Thus the longi-
tudinal part of C~&(p) is not the space-space com-
ponent of a second-rank Lorentz tensor, but rath-
er involves space-space-time-time components
of a fourth-rank tensor. This then has the conse-
quence that (1) does not hold. The detailed calcu-
lations will be presented elsewhere. '

It must be concluded therefore that the CG sum
rule (1) is a result about unrenormalized field
theory, not verifiable in perturbation theory. It
is seen that it possesses the same degree of re-
liability as the old sum rules for the high-energy
behavior of unrenormalized propagators, for the
unrenormalized mass, etc.

If one is willing to accept nonperturbative re-
sults based on unrenormalized field theory, a
simple sum rule for total electron-positron anni-
hilation .. a.y be derived. This sum rule also pro-
vides a test of the constituents of the electromag-
netic current. Furthermore it predicts that
asymptotically the ratio of the total cross section
for annihilation into leptons is determined solely
by the charge structure of the hadronic and lep-
tonic fermion fields.

To derive this, we define

Q (ol/ (0)ln)(nlrb (0)lo)(2w)'5~(Pn —q)

= q„q,-q„„q')p(q').
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The total cross section ol'2 (of) for the process e +e -hadrons (leptons) at center-of-mass energy
(q')"' is given by'

o (q') = 16v2o.2p (q')/q'.
7

The subscripts h, l, on p indicate that the hadronic and leptonic currents, respectively, are to be tak-
en in (5).

In terms of the above spectral function, the Schwinger term is given by

or

(0[[J' (x, o),Z. (0)]~0) = ie -&'(.x) f—dm'p(m'),
0 ' 'i i 2mo

f dm p(m ) = i -f—d xx (0[[& (x, o), J.(0)]~0).

(7a)

(7b)

In the algebra of fields, the Schwinger term is finite; thus we conclude that

lim q'o (q') =0 (algebra of fields).
h

+tg

To calculate the Schwinger term in quark models, we define J;(0) to be ())(2e)yips(-2e), where Q is
the charge matrix, and & is a spacelike vector, to be set to zero symmetrically at the end of the calcu-
lation. Using the unrenormalized commutators

[~,(x, 0), ()) (y, 0) ] = -Qg(x, 0)5'(x-y)

we find that

(O[[& (x, O), &.(0)]IO) =-[&(x+-' )-e&( -x- )2]e(01%('~)y Q'0(-'~).IO), --

(9a)

(9b)

or from (7b)

f dm p(m ) =-i(2w/3)~ (Olp(e)y Q )i)(0)lo). (10)

To complete the calculation, we must obtain an expression for the right-hand side of (10). This will
contain terms which diverge as ~-0, as well as terms that are finite as &-0. We concentrate on the
former, and show that they are independent of the interactions of the fermion fields. To calculate the
divergent portion of

»m & (ol(I(&)y,.Q 4(0)l»,
e-0

we now give & a positive time component and consider

lim e (0[T[(t)(e)y.Q $(0)][0)= lim e Tr[y.Q G(e)],
e-0 ~-0

where G(x) is the unrenormalized fermion propa-
gator,

G(&)=(ol T((()07) (&)1))0=f,e 4(P). (12)

As e-o, G(e) has a singularity in e, determined
by the large-p behavior of g(p). Since for large p

g(p) =--+0 —2, G(e) = — —+0 —. (13)
i 1 i )t' 1

p' p2 ) 2v2 ~4 e2

The term of O(1/e') gives a contribution to e G(e)

which is odd in &, hence vanishes upon averaging
over e; while terms of O(1/e) give finite contri-
butions of no interest to us in this calculation.
The result important in the present application is
that the coefficient of g/e' which determines the
divergent part of f, dm'p(m') is independent of in-
teractions. If we split p(m') into p'+p, where p
is the contribution to p from the interactions, we
see that f, dm'p'(m') diverges while f, p(m')dm'
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converges. Assuming that P(m') possesses no oscillatory pathologies, we conclude that po(m') will
dominate p(m') for large m'. Thus

p (q') pz'(~')»Qz'
(14)

(15a)

theory are suspect and one must check in each in-
dividual case whether or not the limit is applica-
ble. We suspect that when the formal commuta-
tor of well-defined operators yields finite matrix
elements, then the JLB limit is valid. However
when infinite (cutoff dependent) or ambiguous ma-
trix elements result from the formal commuta-
tor, then the JLB limit cannot be applied with im-
punity.

Although our quark model sum rules, as well
as those of Callan and Gross, are based on unre-
normalized field theory, we do not believe that
they are of formal interest only. They can be
checked experimentally and their verification
would be a hint that unrenormalized field theory
converges, in spite of the evidence of perturba-
tive calculations.

It is a pleasure to acknowledge conversations
with Professor C. Callan, Professor S. Glashow,
and Professor K. Johnson.

Note added in proof. —Upon completion of this
investigation, we learned from Dr. S. Adler that
he too has discovered the breakdown of the JLB
limit in the CG as well as other applications.

which coincides with (13).
Finally we may calculate p' explicitly. This is

given by'

o 2 1, 1
'h f'"'=12""~1f'" P '

therefore in contrast to (&) we find

' l, f")
2

16m'n' 12~' ft, l

(16)

(quark model). (17)

Thus Eqs. (6) and (7) offer a test between the al-
gebra of fields and the quark model. Further-
more, if the quark-type model is satisfied, then
Eq. (14) or (17) determines the charge structure
of the quarks.

The present quark-model calculations cannot
be verified in perturbation theory. The reason is
obvious: The unrenormalized propagator does
not exist, and Eq. (13) cannot be given meaning
in perturbation theory. Furthermore' the result
that only p' contributes to the divergent part of
Jo dm'p(m') would also imply that only this quan-
tity causes I, (dm'/m')p(m') to diverge. However
the latter object is just Z3, and in perturbation
theory Zs diverges in every order.

As the only input has been the application of the
JLB limit, (15a), we conclude that this does not
hold in perturbation theory for g(p). This is a
trivial breakdown, obviously traceable to the non-
existence of (O~T[(j(0)$(x)][0). However our dis-
covery that the JLB limit is also inapplicable to
(P~T[J&(0)J~(x)]~P) is remarkable since that. ob-
ject exists in (renormalized) perturbation theory
Thus all applications of that limit in perturbation
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In the last equality we have used the fact the lepton charge matrix, Q), is unity.
The above argument makes use of the classic result that the unrenormalized propagator tends to the

free propagator at large momenta. This is in fact an example of the JLB limit, which states in the
present application that

~ W

);(()=fixe' "(O)7'(((0)((~)IIO) — =' d « '
"(Ol'(((0), y(x, a)}IO)+O( ', ),

p ~ 0

Use of the canonical field commutators gives

g(p) — ~r'p'/p-. "0(lip. '). (15b)
Since g(P) is covariant, and a function only of P,
the above must covariantize into

g(p) —-f/jj(+ o(1/p'),


