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High-temperature series expansions for the Ising model's spin-spin correlation func-
tion are found to order {J/kT)~2 on the simple cubic, bcc, and fcc latices. Analysis of
moment series indicates that the scaling form of the correlation function is correct, at
least in the limit ~r fixed, &-0. Values are obtained for the correlation indices v and
q —the latter by two methods, thereby providing a direct check on the scaling law.

The use of exact series expansions in the study
of critical phenomena has produced much infor-
mation on the critical indices describing contin-
uous phase transitions. ' ' Reported here are
some results found by a new method of obtaining
such series expansions, a method which only re-
quires a modest amount of computer program-
ming and which can be applied to any of the spin
Hamiltonians usually studied. ' To illustrate the
potential of the method, it has been used to find
the high-temperature series expansion of the
spin-spin correlation function of the Ising ferro-
magnet on the three-dimensional lattices with
cubic symmetry through order (J/kT)". The
basis of the method is not new, but it is the first
time to our knowledge that it has actually been
used for obtaining series expansions. It is based
on the linked-cluster expansion developed for the
Ising model by Englert but completely renormal-
ized in analogy with the work of De Dominicis
for the classical gas. ' The vertex-renormalized
version of the Englert expansion has been used
elsewhere in deriving high-temperature expan-
sions for the anisotropic classical Heisenberg
model on various lattices. ' The completely re-
normalized version of the Englert expansion' has
the effect of expressing the interaction potential
between individual spins in terms of a diagram-
matic expansion in certain quantities closely re-
lated to the spin-spin correlation function I'(r, T).
At temperatures greater than the critical temper-
ature this equation may be iterated as a nonlin-
ear integ. al equation, giving I'(r, T) as a power
series in J/kT, where J is the 'interaction en-
ergy between parallel spins. Numerical itera-
tion of the integral equation to twelfth order in
J/kT took 20 min for the fcc lattice on an IBM
360/75 computer, but only 2 min for the simple
cubic lattice. 42 diagrams are needed to twelfth
order for the fcc lattice. The lattice summations
involved in evaluating the diagrams are unre-
stricted rather than being of the "excluded-vol-

ume" type. ' It is this feature which is ultimate-
ly responsible for the great saving in computing
time.

The spin-spin correlation function of the Ising
model is of great interest. The range $(T, H) of
correlations becomes infinite at the critical
point and is expected to behave for T & T in zero
field as'

dv= 2 —Qf, (2)

where d is the dimensionality of the system.
Equation (2) holds for the Ising model in two di-
mensions. In three dimensions, insertion of the
widely accepted value" n= —,

' into (2) yields v
=0.625, which disagrees with the result v=0.643
~0.0025 found by Fisher and Burford' on the ba-
sis of rather short series. Only for the Ising
model are the critical indices known to sufficient
accuracy to permit a meaningful check of (2), so
this discrepancy is probably the only real evi-
dence for the failure of the sealing laws. It
therefore becomes important to ascertain wheth-
er the discrepancy is merely a consequence of
using too-short series.

Kadanoff'"" has suggested that near T~ in zero
field the correlations scale according to

d-2+rlI'(r, T) = D(~r)/r (3)

provided that r» a (the nearest-neighbor lattice
spacing) and av = ax(T) « I but for arbitrary val-
ues of the product zr. This provocative form is
known' to hold for the Ising model in two dimen-
sions, and it is important to discover whether it
remains valid in three dimensions. The prob-
able failure of the scaling relation (2) suggests

(T, 0)= ~(T)=~ [I-(-v/v )j, (&)

where we use the conventional variable' v =tanh(J/
kT). Scaling'~ "~"predicts that the correlation
index v is related to the high-temperature specif-
ic heat index n by
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p =Z (~/a) I'(r, T)=Z m v .(t) n

r n s (4)

The quantities I„'0' are the coefficients of the
usual dimensionless susceptibility series; m„"'
are the coefficients of the second moment series.
Table I contains susceptibility and second mo-
ment coefficients for the three cubic lattices.
Quite generally, we may expect that pt has a
leading exponential singularity at the critical
point, which we may write

p -[1-(~/~ )] t, as v-v,(r+tv -)

C C
(5)

where y is the susceptibility index (t=0). Substi-
tution of (3) into (4} and comparison with (5)
yields the scaling relations

that there may be a breakdown in the scaling
form of the correlation function, and this is in-
deed what we have found. However, the break-
down is such that Eq. (3) still holds, but now for
the limit ~~ fixed, ~a-0, i.e. , scaling holds pro-
vided that distances are measured in units of the
coherence length. The analysis in the rest of
this Letter is some of the evidence that this
weaker form of scaling holds. We hope to report
full details on the breakdown of the stronger
form of the scaling hypothesis in a future com-
munication.

In order to extract the correlation index v from
the correlation function and to test the scaling re-
lation (3), we form the spherical moment series, ~

and v~= v. Hence, a necessary test of the scal-
ing of correlations (3} is the equality of the vt de-
termined from the moment series for different
values of t. This test can only provide evidence
for scaling in the limit of Kr fixed, Ka-0.

Using the conventional ratio methods of anal-
ysis'~ on various moment series we estimate
that v (fcc) =1/9.828, v (bcc) =1/6. 4045, and

vc(sc) = 1/4. 584, with an uncertainty of probably
no more than 1 part in 10'. We find the expected
result for y of 1.250 with an uncertainty in the ex-
trapolation of no more than +0.002. There seems
no reason to doubt that y is exactly 5/4. ' The
moment series with values of t ranging from -2
to 10 were then extensively analyzed by a variety
of methods. Outside this range all methods of
analysis tend to break down as a result of the
series becoming very irregular (for large nega-
tive t) or of great curvature in plots of vt „vs
1/n [see Eq. (8)] for large positive t). One meth-
od used to find v~ was first to divide the p.~

se-
ries by the susceptibility series to obtain a new
series which should behave, as v —v„, like (1-
-v/vc) &. Denoting the ratio of successive
terms in this new series by p~, a sequence of es-
timates for v~ is given by

v =n(v p -1)//+1/t. (8)tn cn
A plot of v& n vs 1/n is usually linear, provided
t& 0. Define the (linearly) extrapolated inter-
cepts by

r=(2W)~ (6) v '=nv -(n-1)v
t~n t n t,n-1

Table I. Coefficients for the expansion of the zeroth and second correlation moments in powers of v for the spin-
g Ising ferrornagnet.

sc bcc

m '2)
n

fcc

1
2
3
4
5
6
7
8
9

10
11
12

6
30

150
726

3510
16 710
79 494

375 174
1 769 686
8306 862

38 975 286
182 265 822

6
72

582
4032

25 542
153 000
880 422

4 920 576
26 879 670

144 230 088
762 587 910

3 983 525 952

8
56

392
2648

17 864
118760
789 032

5 201 048
34 268 104

224 679 864
1 472 595 144
9 619740 648

8
128

1416
13 568

119240
992 768

7 948 840
61 865 216

470 875 848
3 521 954 816

25 965 652 936
189 180 221 184

12
132

1404
14 652

151 116
1 546 332

15 734 460
159425 580

1 609 987 708
16 215 457 188

162 961 837 500
1 634 741 163 188

12
288

4908
72 096

973 116
12 432 096

152 805 372
1 825 058 688

21 320 627 196
244 722 705 888

2 768 965 884 780
30 958 965 878 880a

Comparison with some unpublished work of Dr. M. F. Sykes indicates that these two numbers may be in error.
The magnitude of the possible error is such that it could have no effect on the results here presented.
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for the fcc lattice, and by

v '= mv -2(n-2)vI 1

tn tn tn-2 (10)

v '=0.6362, 0.6365, 0.6369, 0.6374,
p n

0.6377, 0.6378 (11)

for the sc and bcc lattices. For n=7 to n=12,
we find

ing singularities. This seems to happen here,
as values of v always around 0.638 are recover-
ed if t and t' are kept within the range from -2
to 10. As an example, for t=2 and t'=0, on the
fcc lattice, the following sequence of estimates
for v, is obtained on going from the fifth to the
twelfth term; 0.63869, 0.63887, 0.63810,
0.63821, 0.63843, 0.63849, 0.63841, and 0.63838.
We shall conclude therefore that

for the fcc lattice and v = v=0.638+~0s 001 (15)

v '=0.6410, 0.6387, 0.6375, 0.6386,
p n

0.6381, 0.6385 (12)

for the sc lattice. For values of t which are pos-
itive, this and other ratio methods of analysis
give very similar results for v&, all around
0.638. For negative values of t the same meth-
ods yield values of vt that decrease with t, fall-
ing below 0.625 for t & -2. As t--~, one would
expect the resulting series to behave like the in-
ternal energy, for then any finite series will
look very similar to the spin-spin correlation
function to a site close to the origin. Hence the
apparent decrease in vt is not very surprising.

There is, however, another method of analysis
which yields constant values for vt throughout
the entire range -2& t&10 and for the superior-
ity of which an a priori argument can be made.
This method starts by forming the coefficients
(R tt') defined byn

(13)

If the scaling form (3) holds, the coefficients
tt'(R„)should be proportional to n(t t Iv for

large n, so that the ratio of successive coeffi-
cients (R„tt ) should approach unity with a slope
proportional to (t-t') v, when plotted as a func-
tion of I/n. One can therefore determine v with-
out first having to estimate the critical tempera-
ture. This procedure by itself is quite success-
ful, but the most consistent results are obtained
by analyzing the logarithmic derivative with re-
spect to lnx of the generating function

(14)

for t &t'." Each term in the resulting series
would be an estimate of 1+ (t-t')v if the scaling
form (3) were valid. It can be shown that work-
ing with the ln derivative series considerably re-
duces the amplitude of certain types of compet-

and that the scaling form (3) is valid within the
accuracy of our extrapolations. It should be
therefore permissible to use the scaling relation
(6) to find r), which is then 0.041+o",'o", .

Alternatively, the index g can be determined
directly by analyzing the decay of correlations at
the critical point,

I' (r) —= I'(r, T = T) = D(0)/—r
C C

(16)
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FIG. 1. A plot of In[(r/a)I'o(r)] vs In(r/a). The
straight line corresponds to an g of 0.041. The error
bars are an attempt at representing the uncertainties
in the extrapolations.

provided only that r» a. For each lattice sepa-
ration r, I'c(r) can be estimated from the series
expansion by extrapolating" the nth partial sum
versus (n-5) "'. In Fig. 1 we have plotted
1n[(r/a)I'c (r)j vs In(r/a) on the fcc lattice for
those values of r for which reasonably consistent
extrapolation seems possible with the number of
terms available. The slope of this plot gives -q.
The precision of this approach is limited, but
the value of g obtained is entirely compatible
with the results quoted above, thus providing a
direct check of the scaling law (6). We remark
that on the plane square lattice the asymptotic ex-
pression (16) is accurate to within 1.5% even for
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sites near the origin. It is therefore not unrea-
sonable to hope that the nearest and next-nearest-
neighbor correlations bracket the extrapolation
to small x of the asymptotic form (16}.

We should like to thank Dr. M. F. Sykes for al-
lowing us to compare our results for the suscep-
tibility and energy density with some of his un-
published work, thereby providing an important
check on the calculations. We are indebted to
Professor L. P. Kadanoff for many interesting
discussions.
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NUCLEAR HYPERFINE CONTRIBUTION TO THERMAL CONDUCTIVITY OF HOLMIUM
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Thermal conductivity of a holmium single crystal has been measured in the tempera-
ture range 0.6 to 4.2'K. Around 1 K there is a total enhancement of over 30% in the con-
ductivity value and the Lorenz number increases sharply to beyond 3.8 X 10 8 W 0/deg .
When correlated with specific heat data, this extra contribution appears to be a nuclear
hyperfine effect. A possible mechanism is proposed.

This is to report the first observation of what
we believe is a nuclear hyperfine contribution to
the thermal conductivity of holmium around 1'K.
A unique feature in rare-earth ferromagnets has
been the large values obtained for the calculated
Lorenz number, the ratio of thermal. to electri-
cal conductivity. Around 4'K, this value ranges
from (5 to 10)x 10 s W 0/deg' as compared with
the standard Sommerfeld value of 2.45x 10
0/deg' expected in ordinary metals. ' To account
for this, the presence of additional heat carriers
like magnons and/or phonons have been suggest-
ed. ' 4 In rare-earth ferromagnets, in addition
to electrons, phonons and spin disorder, there
is a possibility of a new mechanism of heat trans-
port arising from the nuclear hyperfine field.
This nuclear contribution (arising from the inter-

action of the nuclei with the hyperfine field and
the Rudermann-Kittel-type indirect exchange in-
teraction coupling the nuclear spins and the 4f
electrons with the conduction electrons), as in
specific heat' and thermal expansion, '~' would
ordinarily be significant only at very low temper-
atures (T & 0.5'K). In terbium and holmium, how-
ever, this can be large even at higher tempera-
tures. Our experimental data indicate that in
holmium this contribution is significant below
about 1.2 K, enhancing the total thermal conduc-
tivity by as much as 30% or more.

Our thermal-conductivity measurements on a
single-crystal holmium specimen in the tempera-
ture range 0.6 to 4.2'K are presented in Fig. 1.
The electrical resistivity, measured by the stan-
dard four-probe technique, was found to have a

943


