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higher energies (ey~ 5 eV) is 8 cm for the data
presented in Fig. 2 and is independent of the fre-
quency of excitation. At higher neutral pressure
this distance is reduced. This length corresponds
to the ion-neutral collision mean free path, and
is much longer than the damping length of the
wave. For lower ion energies, however, l is
smaller than that for higher ion energies. The
low-energy / decreases as the frequency is in-
creased. This behavior of the damping length
with frequency in the lower ion energy range sug-
gests that ion-ion collision effects are present. '~"~"
Further improvement of the resolution of the en-
ergy analyzer will make it possible to measure
the ion-ion collision effects as a function of ener-
gy. An experimental study of nonlinear effects
on the distribution function should also be inter-
esting.
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Dr. K. Nishikawa for their interesting discus-
sions during the course of this research.
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CONVERGENCE OF COUPLING-PARAMETER EXPANSIONS
FOR DISTRIBUTION AND THERMODYNAMIC FUNCTIONS
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Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland

(Received 27 March 1969)

It is shown that Maclaurin expansions of properly defined distribution functions and of
the density-to-activity ratio in powers of exponential coupling parameters (which multi-
ply the Ursell-Mayer f bonds, instead of pair potentials) converge if the integral of the
f bond over all space exists. Therefore various successive approximation schemes can
be devised with the assurance that they will converge to the correct solution.

The device of multiplying the interaction potential of one or more particles by a coupling parameter
whose value varies from zero (complete decoupling) to unity (full coupling) has been extensively used
in quantum as well as classical statistics. Most problems dealt with by this method have been solved
only in the weak (linear in the coupling parameters)-coupling limit; for example, for the case of Cou-
lombic potentials, one obtains the Debye distribution. One of the most serious difficulties in extend-
ing the method to include higher powers of coupling parameters has been the question of convergence
of expansions of distribution and thermodynamic functions in powers of the coupling parameters of one
or more particles: It was not known whether such expansions converge.

In this note we prove that expansions of properly chosen distribution and thermodynamic functions in
powers of the exponential coupling parameters' (multiplying the Ursell-Mayer f bonds of individual
particle pairs) of any number of particles ot' the system converge for all positive values of the param-
eters, for all classical systems for which the integral of the Urseli-Mayerf bond over an infinite vol-
ume is finite. We also show that expansions in powers of the usual coupling parameters (multiplying
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directly the individual pair-interaction potentials) can be put into a convergent form. Expansions in

individual coupling parameters in quantum statistics are considerably more complicated owing to the

problem of particle indistinguishability. The convergence proof presented here means that one can de-
vise a, number of successive approximation schemes for obtaining equations of state, with the assur-
ance that they will converge to the correct solution. The question of rapidity of convergence of such

schemes, however, still remains to be investigated.
We treat a system of N particles in a volume V, interacting with a pairwise additive potential U&(N),

N=rl, ~ ~, r~. We write the Boltzmann factor vg(N) =exp[-U~(N)/kT] with each particle i coupled by
the parameter A.i.'

(N;A. ) = II [1+A.A. .f. .], f . =v. .-l. =exp[-U. /kT]. -1. (1)
N ' N . . - i jij' ij ij ij

i

Here A~y denotes the set of parameters A. 1, ~ ~ ~, ~&, and i, j+N means that the pairs i,j are chosen from
the set N, without permutations. The canonical-configurational partition function is thus

Z g ) = J v (A )d(N), d(N) =d'r ~ ~ ~ d'r (2)

with all integrations understood to be over the volume V. As with all coupling parameters of this type,
we have

= —= gj = exp[-a(Zj)],

with zj the activity of particle j, coupled by Aj, a(aj) the excess chemical potential of that particle
in units of kT, and p =N/V The dist.ribution functions are defined by the asymptotic formula'

n

g (n, ~ )=, fv (N;x )d(N-n), d(N-n)=d'r ~ ~ ~ d'r . (4)

Here also only the "strong"-coupling dependence4 is indicated explicitly.
We now define distribution functions Gn(n; A.„)by

n g (n;7)
(5)

with v„(n;7.„) the direct Boltzmann factor of the particles of the set n. The division by v„ is always
permissible because it merely represents a cancellation of the same factor implicit in Eq. (4). The
functions &f and G„(n; Az) have the properties

(g,.)~. 0 =1; [G„(n;X„)]~. 0 = G„ 1(n-i, i„,), icn. (6)

Here n-i is the set 1, ~ ~ ~, n, with the ith particle omitted, and )7n i has the corresponding meaning.
Differentiating Eq. (5) with respect to A, we obtain'

BG (n, )T )/ A =z. Jf. .v(jln-l;A, X.)G (n, j;X,A )d(j ), .
n ' n 1 j ij 'n-1' j n+1 ''n' j

v(j!n-1;a,X.) = II (1 x.+A f .), n-1 =2 ~,n. . .n-1' j . i jij '
i( n-1

By repeated differentiation with respect to A„using Eqs. (6) and (7), we obtain the expansion of G„(n;
X„) in powers of A, :

N-n
pn

G (n;g ) =G (n-liA. )+ ) '
~

fE(min;A. )G
1

(n-1+m;)7 )d(m)
m=1

(6)
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with

R(rnln;7. ) = U A. z f . v(jln-I; A, A.)v (m;X )n-1+m . j j 1j ' n-1' j m ' mj( m

II v( ji n-1) v G
m n —1+m

jism

equal to zero. We also note that the convergence (or divergence) of the series will not be affected if
the coupling parameters of particles of the sets m are all set equal: Xj=X (hence z =z). With these
provisos, using (6), and taking the limit N, V- ~ in Eq. (8), we obtain from the latter

S (n;7 ) =G (n-1;X ) exp(A. Azf ), f = ff d(j. .) (10)

and the sets m=n+I, ~ ~ ~, n+m. We now proceed to prove that the expansion Eq. (8) converges in the
thermodynamic limit N, V- ~, N/V=p.

First, we set all coupling parameters of particles m in the product

The summation leading to S0(n; g„) can be performed if f, is finite. This condition is fulfilled for all
physically reasonable models. ' By setting all Aj's, except the first m0 (Z„+1, ~ ~ ~, z~ ~~ ), in the
product equal to zero, we obtain in an entirely analogous manner the following sequence of finite
sums:

S (n;f )=G (n-I;7 )
0

m

+ ) . ', fE(min;A )G (n-1+m;)7 )d(m)+8
m=1

with

= JE(m01 n; 7 ) G (n-1 + m; X )d(m )P
mp 0 ' n-1+m n-1+mo 0' n-1+mp mo

P =exp(A Azf )- /. (X,Zzf, )

u=o
(12)

Since R~ -0 as mo- ~ (because then P~ -0, and the integral is finite), the sequence converges in
this limit. Comparing Eq. (11) for mo = ~ with Eq. (8) for N, V- ~, we see that in the thermodynamic
limit,

G (n;X )= lim S (n;7 ).
n ' n mo n

Alp~ 0
(13)

This completes the proof. In an analogous manner it is shown that the complete Taylor expansion of
G„(n;T„) in powers of all cou. pling parameters of the set X„converges. The expansion of g, (x,) in A, is
given by Eq. (8) with n =1 and thus is also convergent. When all coupling parameters in Eq. (8) are
unity and Eq. (5) is used, one obtains the Kirkwood-Salzburg expansion of g„(n). The usual argument
for convergence of the latter depends on the assumption that particles have practically finite hard-
core diameters, so that the product

becomes vanishingly small for sufficiently large m. The proof given here can be applied also to the
expansion of &(A.I)g„(n;7„) in A.|i thus we see that the hard-core condition is unnecessarily restrictive.
It is sufficient that fo, Eq. (10), be finite.
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In the case of the usual coupling parameters, with

it can be shown that G„(n; $s) can be written in a form similar to Eq. (8) with A, X&flj replaced by
fl&($l, E.) =exp(-(l)&U, &/kT) ia-nd with the corresponding adjustment for the Boltzmann factors. The
convergence of these expansions is proved by the same arguments as for Eq. (8). Such expansions,
however, are not Taylor expansions of G„(n; $„) in $, but, rather, resummations of these expansions
into convergent forms.

The present proof cannot be applied to the customary distribution functions g„(n;7„). The most that
can be said about convergence of an expansion of g„(n; 7„) in powers of Xf, i & n, is that g„can be ex-
pressed as a ratio of two converging series.

The functions G„(n) yield the usual thermodynamic functions (with activity instead of density as in-
dependent variable) through the same theorems as for g„(n).

See, e.g. , J. G. Kirkwood and J. C. Poirier, J. Phys. Chem. 58, 591 {1964), and references cited therein.
2E. Meeron, Phys. Rev. 126, 883 (1962).
Strictly speaking, zj in Eq. (3) equals thermodynamic activity only after taking the thermodynamic limit on the

left-hand side.
The dependence of n(A. &) on any finite number of coupling parameters from among the N-1 remaining ones is ther-

modynamically negligible. The same situation obtains for distribution functions: gn(n; Xn) depends strongly only
on the n coupling parameters of the set n bee J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935)l.

Kirkwood, Ref. 4.
In order to obtain Eq. (7), the coupling parameters of the set N-n were all set equal to Aj and terms O{n/V)

{—0 in thermodynamic limit) neglected. Retaining a different value for each coupling parameter merely results in
a very cumbersome notation but does not affect our proofs.

In the case of Coulombic potentials with short-range repulsion, f0= ~, but the expansion can be resummed so
that the Debye potential replaces the Coulombic potential. The corresponding integrals are then finite,

J. G. Kirkwood and Z. Salzburg, Discussions Faraday Soc. 15, 28 {1953).
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%e have performed angular-distribution measurements of the two gammas produced
by annihilation of positrons in a type-II superconductor (Nb3Sn} to detect the supercon-
ducting smearing effect on the electrons momentum distribution function. Our results
give, for the first time, a direct experimental evidence of the redistribution of K-space
states at the superconducting transition.

In a normal metal the electron distribution
function is the Fermi-Dirac one, but, for the su-
perconducting state, the BCS theory predicts a
redistribution in K space, because of the electron
pairing. &' Although there are, at present, many
experimental proofs of this theory, it has been
impossible, until now, to obtain a direct observa-
tion of the modified distribution in K space. The
positron annihilation technique allows the mea-
surement of the electron momentum~ ~4; we have
used it on a sample of Nb Sn to show the super-

conducting smearing effect on the electrons' mo-
mentum distribution function.

At absolute zero, the smearing range 6K of the
momentum distribution function in a supercon-
ductor is given by'

5K = 6/k V = 1/lF

where 4 is the superconducting energy gap, ~F
is the Fermi velocity, and ( is the coherence
length. In a type-I superconductor ( is typically


