
VOLUME 22, NUMBER 17 PHYSICAL REVIEW LETTERS 2S APRIL 1969

RESONANT PHONON SCATTERING IN MERCURY SELENIDE*

Donald A. Nelson, J. G. Broerman, E. C. Paxhia, and Charles R. Whitsett
McDonnell Research Laboratories, McDonnell Douglas Corporation, St. Louis, Missouri 63166

(Received 17 March 1969)

The lattice thermal conductivity of HgSe is strongly depressed in the temperature re-
gion from 4 to 30 K. This could be accounted for satisfactorily only by a third-order
(two-photon) resonance scattering process. The relative magnitudes of the dominant
Rayleigh scattering due to ionized Hg interstitials and of resonance scattering may be
varied by different procedures for annealing HgSe.

The resonant scattering of phonons by various
impurity centers in alkali halide crystals has
been the subject of numerous investigations. ' We
report here the observation of a strong reso-
nancelike scattering manifested in the thermal
conductivity of mercury selenide (HgSe). Reso-
nance effects on the thermal conductivity of cad-
mium chalcogenides and silicon have been noted, '
but the data presented here for HgSe are the first
that we know for covalent materials that can be
explained only by the third-order (two-phonon)
resonance scattering process of Wagner. s Fur-

ther, the relative magnitudes of Rayleigh scatter-
ing and resonance scattering may be varied by
annealing the material in different atmospheres.
Thus HgSe is a promising material for quantita-
tive studies of the nature of defects in II-VI com-
pounds that have the zinc-blende crystal struc-
ture.

In Figs. 1 and 2 are shown the results of mea-
surements of the temperature dependence of the
thermal conductivity of a single crystal of HgSe.
The crystal was subjected to a different anneal-
ing procedure before each run: Run 1 was on the
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FIG. 1. Lattice thermal conductivity of HgSe as
grown (Run 1) and annealed in Se vapor (Run 3).
Dashed curves are calculated electronic contributions
for the two runs which have been subtracted from the
measured total thermal conductivity to obtain the ex-
perimental points shown. The solid curves are the the-
oretically computed lattice thermal conductivities.

FIG. 2. Lattice thermal conductivity of HgSe an.-
nealed in vacuum (Run 2) and in Hg vapor (Run 4).
Dashed curves are calculated electronic contributions
for the two runs which have been subtracted from the
measured total thermal conductivity to obtain the ex-
perimental points shown. The solid curves are the the-
oretically computed lattice thermal conductivities.
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Table I. Rayleigh and resonance scattering parameters.

Electron
concentration

at 77K

(cm 3)

A (derived)
=A +A

iso Hg
(10 43 sec3)

A (experimental)

(10 43 sec3)

N

(102' cm 3)

Run 1
Run 2
Run 3
Run 4

3 0 &&10'8

5.3 x 10~7

8.0 x 10"
6.7 & 10

31
5.8
8.6
68

39
6.2
7.9
61

4.5
4.3
4.1
2.3

as-grown crystal, Run 2 was on the same crystal
annealed at 210 C in vacuum for 100 h, Run 3 was
on the same crystal subsequently annealed at
200'C in selenium vapor for 36 h, and Run 4 was
on the same crystal finally annealed at 235'C in
mercury vapor for 48 h and at 255'C for 24 h.
The conduction-electron concentration in each
case, as deduced from measurements of the Hall
coefficient, is listed in Table I. Preliminary
density measurements show that the conduction-
electron concentrations must primarily be due to
interstitial Hg.

The lattice thermal conductivity, obtained by
subtracting the electronic contribution from the
total, is plotted for Runs 1 and 3 in Fig. 1 and for
Runs 2 and 4 in Fig. 2. The electronic thermal
conductivity was calculated from the electrical
conductivity and the Wiedemann-Franz equation
in which the experimental values for the Lorentz
number, as determined by Aliev, Korenblit, and
Shalyt, ' were used; the calculated curves of elec-
tronic thermal conductivity also are shown in
Figs. 1 and 2. In all cases there is a marked
suppression of the lattice thermal conductivity
between approximately 4 and 30 K (above the tem-
perature for which the thermal conductivity is a
maximum). This is most satisfactorily accounted
for by the third-order resonance scattering pro-
cess of Wagner. ~

To fit the data a modification of the Callaway
theory' was used. The inverse relaxation time
was taken to be 7 '=7U +&~ '+T~ '+71
+ TB, where &U

' B1T~' exp(-e/a—T—) represents
scattering by umklapp processes, 7~ ' =&2T ~'
represents normal processes Tg ' =Ace' repre-

9 n' hy'w
Ng((u) f((u, T )h ((u),R 16 p c coa

sents Rayleigh scattering, 71 '=c/fL represents
boundary scattering, and TR ' represents reso-
nance scattering. In these expressions ~ is the
phonon frequency, T is the absolute temperature,
e is the Debye temperature, c is the speed of
sound, and I- is the geometrical mean of the
width and thickness of the sample. The constants
A, B„B„a,and f are adjusted to best fit the
data. The expression for T ' differs from that of
Callaway by the addition of Tg ' and by the use
of vp ' =B1Tur'exp(-e/aT) instead of ~U
=81T+' for the umklapp term. This form is that
determined empirically by Slack and Galginaitis'
for CdTe and by Walker and Pohl' for KCl and
was found necessary for HgSe in order to fit the
higher temperature data.

A resonance scattering cross section is needed
which is sharply cut off on the low-temperature
side. For this reason a mechanism such as that
proposed by Krumhansl' for vacancy scattering
could not fit these data. Attempts to fit the data
by considering the separate contributions of lon-
gitudinal and transverse phonons by a method
similar to that of Holland' also were not sucess-
ful.

A mechanism which will provide a relaxation
time with the proper temperature dependence has
been proposed by Wagner. ~ In this process, two
phonons annihilate each other to form a quantum
of the resonant complex. In order for this pro-
cess to be seen in the thermal conductivity, the
mass or strain defect strength for the impurity
must be sufficiently weak that this third-order
process can dominate the usual second-order
processes. Wagner has calculated the relaxation
time for the process to be

(1a)

(d (d (d ( (d) &d ( (di
g(cu) =

I 1+ 4 — ln I 1— I+1 —4 Il-—I,
cu cu cu ( cu ] cu ( cu
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(&u -&u) exp[h((u ter-)/KT)(e —1)2 8(d /KT
s S

[exp()f&u /KT)-1] (exp[8(&u -~)/KT]-1 }'
s s

(1c)

h((u) =9((u-(u ),S S

=e((u -&u u)-)9((u ~D),s 0 D' s (1d)

8(y) = 1, y - 0.

=0, y &0.

In these expressions y is the Gruneisen constant
(assumed to be 2.0), p =8.266 g/cm~ is the crystal
density, N is the product of the concentration of
resonant scattering centers by the number of
modes per center, coo is the Debye frequency, c
is the average speed of sound in the material,
~g is the average resonant frequency of the com-
plex, and ~z =ac, where n ' is the "radius" of
the impurity.

The curves from all four runs were fitted si-
multaneously by a method for the estimation of
nonlinear parameters due to Marquardt. " Only
A and N were allowed to vary from run to run.
The average speed of sound, c =1.90x10' cm/
sec, and the Debye temperature, B=146.6 K,
were determined by ultrasonic pulse-echo tech-
niques at 10 MHz. The geometric mean of the
width and thickness of the sample was 0.66 cm.
The values for the parameters that give a least-
squares fit simultaneously to the data of all four
runs are f = 1.12, B,= 2.05X 10 "sec/K, B,
=1.23&10 "sec/K', a=1.424, &uS=4. 618x10"
sec ', and ~~=3.3&&10" sec '. The value for
8, is of little significance since 8, and 8, are
highly correlated in the fitting process. Putting
B,=10 "sec/K produces at most a 10% change
in the thermal conductivity. A separate term for
the normal processes is usually omitted when the
TaP exp(-e/aT) form is used for the umklapp
processes. '&' The value obtained for sos indicates
that the resonance lies within the acoustic-pho-
non band, that is, it is a quasilocalized mode.
The value obtained for (do would indicate a "size"
(1/o.') of about 6X 10 ' cm for the resonant cen-
ter. However, ~~ and N are rather highly cor-
related in the fitting, and this value must be re-
garded as approximate. The values determined
for A and N for each run are given in Table I.
The values shown for N, the total number of res-
onant modes per cm~, are certainly not realistic,
even if one assumes that the complex extends to
second nearest neighbors of the impurity. Er-

rors of this sort are typical of third-order pro-
cesses in crystals with unit cells whose inequiva-
lent atoms have greatly differing masses. " It is
not known whether they are associated with dis-
persion, "~~ that is, violation of the acoustic ap-
proximation, or with breakdown of the "Grunei-
sen approximation" [Eq. (38) of Ref. 3].

Using the expression for isotopic scattering due
to Pomeranchuk' and Klemens'~ we find Aiso
=4.61X10 4 sec for HgSe. If we write N=pNR,
where NR is the number of resonant scattering
centers, and A =Also+ (3a0 /wc )SHg'fHg'+ (3a0 /
wc')SR'fR, where f~ is the mole fraction of the ith
impurity, we find a best fit to the experimental
values of A for SHg= 2. 12 and pSB' &10 '

by as-
suming that each interstitial Hg atom contributes
one conduction electron. The agreement between
the experimental and derived values given in Ta-
ble I is then better than 20%, and the Rayleigh
scattering is due nearly entirely to the charged
excess mercury. Even the most generous esti-
mate of the number of resonant modes per center
and third-order scattering errors yields SR &0.1.
This is consistent with%agner's assumption that
the third-order process dominates the second-or-
der processes, that is, that the defect responsi-
ble for the resonant scattering is loosely coupled
to the lattice.

The weakness of this coupling would tend to
rule out, for example, Se vacancies or any
charged centers. A possible source is the sub-
stitution of oxygen or tellurium for selenium in
the lattice. Experiments to identify the source
of the resonance scattering are now in progress.

*Research was conducted under the McDonnell Doug-
las Independent Research and Development Program.
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CRITICAL PRESSURE FOR THE METAL-SEMICONDUCTOR TRANSITION IN V203

D. B. McVAmn and T. M. Rice
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received 20 November 1968)

The metal-semiconductor transition in V203 is found to be suppressed above 26 kbar
which corresponds to a volume compression of 0.9%. The temperature and volume de-
pendence of the resistivity of the metallic phase is consistent with semimetallic behav-
ior and a pressure-dependent band overlap. We propose that the metal-semiconductor
transition in V203 may be driven by the Coulomb attraction between electrons and holes
and may be an example of an excitonic phase change.

V,O, belongs to the small class of materials
which undergo a metal-semiconductor transition
with decreasing temperature at room pressure. "'
By applying pressure in excess of 26 kbar we
have suppressed the low-temperature insulating
phase and have studied the resistivity of the me-
tallic phase down to 2 K. Vfe find that both the
temperature and volume dependence of the resis-
tivity are very different from that of ordinary
metals and may be explained if we assume a
semimetallic state for V,O, with an overlap vary-
ing as a function of pressure. These results do
not support the current theoretical models for
the metal-semiconductor transition and lead us
to propose that the metal-semiconductor transi-
tion in V~OS may be an excitonic phase change.

The experiments were done in a high-pressure
cryostat using a girdle die with AgC1 as the pres-
sure-transmitting medium. 3~4 The pressure cal-
ibration at room temperature was relative to the
25.4-kbar transition in a Bi wire mounted in the
die, and it was assumed that: at constant applied
load the pressure was independent of tempera-
ture. The samples were single crystals grown
by flame fusion. ' The transition temperature of
the large crystals at 1 atm was To= 176 and 164
K on warming and cooling, respectively. How-
ever, To in another sample composed of smaller
chips (sample 2) was T,=119 and 95 K. X-ray
Guinier powder patterns showed that both sam-

ples had the n-corundum structure with a =4.948
+ 0.002 A and c = 13.97+0.01 A. This supports
the suggestion that earlier reports of TO=100 K
in samples of vanadium oxide may be attribu-
table to nonstoichiometric or impure V,O, .

The results of T, vs P are shown in Fig. 1 and

p vs T at P & P~ in Fig. 2. The results were nor-
malized to the absolute resistivities determined
at 1 atm of 540 + 100 pQ cm (sample 1) and 325
+ 60 pQ cm (sample 2). As the pressure was qua-
sihydrostatic, the validity of the results was dem-
onstrated by their reproducibility and insensitiv-
ity to the orientation of the crystals in the pres-
sure cell. Also, the pressure and temperature
coefficients are in reasonable agreement with
those determined under true hydrostatic pres-
sure: d lnp/d T = +0.0018 + 0.0001 K ' (sample 1j,
+0.0012 + 0.002 (sample 2), and +0.0023 (hydro-
static)'; dlnp/dP= -0.010+0.002 kbar ' (sample
1), -0.005+0.001 (sample 2), —0.005 and -0.006
(hydrostatic —p» and p», respectively). ' These
coefficients refer to T =298 K and P= 25 kbar
except for the hydrostatic temperature coeffi-
cient, where P = 1 atm. Repeated cycling through
the transition does lead to some sample deterio-
ration as To determined at 1 atm after the pres-
sure experiment is =10 K lower (Fig. 1).

The Clausius-Clapeyron equation relates the
pressure dependence of a first-order transition
to the entropy and volume changes at the transi-
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