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The far-infrared absorption spectrum of crystalline alpha oxygen (a-0O,) has been
measured in annealed samples up to 20 mm thick. The prominent feature of the spec-
trum is a temperature-dependent absorption near 27 em™! which appears to be an anti-
ferromagnetic resonance mode, the first such collective excitation to be observed in a

molecular solid.

We report here the first far-infrared (10- to
100-cm ™) spectrum of solid polycrystalline oxy-
gen in the antiferromagnetic @ phase's? which is
stable from 0 to 23°K. The main feature of the
a-0, spectrum is a pronounced absorption peak
near 27 cm™! at 4.2°K with a linewidth of about
1.4 cm—?. This peak shifts to lower frequencies
and diminishes in amplitude with increasing tem-
perature and is unobserved above the a~ 8 tran-
sition (23.8°K).

Carefully annealed® samples up to 20 mm thick
were prepared in situ on a wedge-shaped sap-
phire window mounted on the end of a special
lightpipe section equipped with heaters and tem-
perature sensors to control the sample prepara-
tion. Standard Fourier-transform spectroscopy
techniques* were employed using a commerical
Michelson-type interferometer modified for low-
temperature investigations.

Figure 1 compares a representative spectrum
(sample thickness =6 mm) of the antiferromag-
netic o phase at 5°K with the 8 and y phases (see
below) and the background. The spectra have the
same transmission-maximum normalization and
are displaced vertically for clarity. The irregu-
lar structure on top of the main beam-splitter
mode is due to the channel spectra* of the win-
dows in front of the detector element.® For y-0,,
the total signal level at the detector is the same
as that of the background, but decreases upon
cooling to the B phase due to increased absorp-
tion of short-wavelength radiation. There was
no significant change in the signal level upon
cooling to the @ phase. This result is consistent
with the fact that the o and B structures have
about the same density.?

Figure 2 illustrates the striking temperature
dependence of the main absorption in the «-0,

spectrum. The frequencies of maximum absorp-
tion extracted from these data are plotted versus
temperature in Fig. 3. The points at 68 and 150
GHz were obtained in an earlier attempt® to ob-
serve antiferromagnetic resonance in solid alpha
oxygen using the fixed-frequency, variable-tem-
perature method’ appropriate to polycrystalline
samples in zero applied field. These points have
been included for completeness since they are
consistent with a cooperative magnetic mode in-
terpretation to be discussed below.

The oxygen molecule is of great interest since
its ground state has a nonzero spin S=1 and the
study of the magnetic properties of its condensed
phases should give information on the nature of
“direct” p-electron exchange and the dependence
of exchange on molecular rotational quantum
states. The details of the low-lying, spin-rota-
tional energy-level structure of the free mole-
cule are well known from accurate measurements
in the microwave range® and more recently in
the far infrared.® On the other hand, there is
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FIG. 1. Far-infrared absorption in solid phases of
oxygen.
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FIG. 2. Far-infrared absorption in alpha oxygen.

very little information on the energy-level scheme
in the condensed state. At least two important
mechanisms for perturbing the low-lying levels
are operable: rotational hindrance and the ex-
change interaction. The molecule’s rotational
degree of freedom will become hindered because
of the close proximity of neighboring molecules.
As a result, the free rotator states character-
ized by energy levels Ex ~Bg K(K +1) go over to
two-dimensional harmonic oscillator or libra-
tional states En,m~ (m+m+1)#w. This effect
has been observed!®~*2 for oxygen molecules in
a B-quinol clathrate matrix and can be described
by adding an anisotropic term to the Hamiltonian
of the form

D[Sz"’—%s (S+1))

For the case'! where the molecular axis is com-
pletely pinned, D/kc =3.9 cm~!, which is es-
sentially the energy separation of the free-mole-
cule states |[K=1,J=0)and [K=1,J=1).

The magnitude of the exchange interaction be-
tween oxygen molecules has been the subject of
several studies!®~?® since neutron diffraction
experiments'® showed a-0O, to be antiferromag-
netic and the crystal structure of this low-tem-
perature phase was determined.!»!” Recently
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FIG. 3. Temperature dependence of far-infrared ab-
sorption in alpha oxygen. The points at 4- and 2-mm
wavelengths were taken in this laboratory. The dashed
curve is proportional to (yeHE)W taken from optical
data (Refs. 14 and 15) (see text).

Eremenko and his coworkers'%!® have observed
a temperature-dependent shift attributed to mag-
netic-exchange interactions in the double!® opti-
cal transition spectrum of alpha oxygen. The
exchange energy, corresponding to magnons ex-
cited at the Brillouin-zone boundary, was mea-
sured to be y Hp ~75 cm ™ at 4.2°K (ye is the
gyromagnetic ratio and Hf, is the effective ex-
change field). The exchange energy, as mea-
sured'® by the magnon shift, is constant from 5
to 10°K and then falls off smoothly with increas-
ing temperature to about 85% of its low temper-
ature value before falling rapidly to zero at

a — B transition.

One would expect the energy of a 2 =0 magnon
(antiferromagnetic resonance mode) to be of or-
der™ y,(2HpH/)"?, where YoHy is the effective
anisotropy energy. A large contribution to the
anisotropy energy will come from the interaction
between the spin and the figure axis of the mole-
cule discussed above, and assuming that the
molecular axis is completely pinned,? will amount
to 3.9 em™!. This corresponds to an anisotropy
field of H4 ~50 kOe which is large for most mag-
netic systems. Assuming that other contributions
to the anisotropy are negligible?! and using the
value yoHp ~75 cm™! from the optical data, we
calculate the antiferromagnetic resonance ener-
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gy at 4.2°K to be

~ H /2= -1
Fw =y (2H H,)*=24 em™,

A
in reasonable agreement with the line reported
here.

The dotted curve in Fig. 3 is proportional to
(voHE)'? taken from optical data.!'%'® If the
above expression correctly describes our data,
then the anisotropy must also decrease with in-
creasing temperature.

Finally, we should mention that in the thickest
samples we observed at 4.2°K additional weak
absorption lines at 37 and 43 ¢cm ™! with line-
widths ~1 cm ™. These may be spin-librational
level transitions or transitions of cooperative
magnetic origin. Any assignment would be pre-
mature without further study, however.
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