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The 4-MeV ring is expected to be achieved in
the next few months following the recent comple-
tion of the improvements to the Astron accelera-
tor. The new parameters of the Astron accelera-
tor are F. =4 MeV and I=800 A. The 1000-MeV
ring is not expected to be achieved for several
more years, however, because it requires a new

accelerator, probably a betatron using as the in-
jector the Astron accelerator, to accelerate
1000 A to 1000 MeV. In concluding I would like
to say that another advantage of the static field
compressor is that it can produce a large num-
ber of rings per second at a rate depending only
on the inj ection rate from the electron acceler-
ator.

*Work done under the auspices of the U. S. Atomic
Energy Commission.
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An algorithm is presented for obtaining electron-gas stability information from neu-
tral-plasma literature.

In this work we describe some basic properties
of a magnetically confined collisionless electron
gas in the framework of the nonrelativistic Vla-
sov equation. The results are pertinent to recent
experimental studies'~' of this problem. Previ-
ous treatments'~4 of the equilibria and stability of
electron gases have been carried out within the
framework of macroscopic fluid models. A diffi-
culty with that approach is that it is not straight-
forward to extend it to include finite tempera-
ture. ' Also, there are instabilities and waves as-
sociated with the velocity-space structure of the
electron distribution which are not recovered
within a macroscopic model. For these reasons
we have treated the problem by using the Vlasov
equation and obtained (a,) a variety of self-consis-
tent simple equilibria including space charge and

(b) associated dispersive properties and stability
behavior.

The Vlasov equation' describes the time evolu-
tion of the probable density of electrons f(x, v, t)
in velocity-configuration phase space (x, v) in the
absence of collisions and is given by

sf af q - v~B &f—+v ~ —+—E+ —0
m c ~v

where

V E = 4sq fd'v f+ 4wp ext'

1 8 - 4mq 3 4mgxB=- —E+ d'v vf+ J—
c ~t c c ext'

where q(= -e) and m are the charge and mass of
the electron, respectively. Thus in Eq. (1) the
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electric field E(x, t) and magnetic field B(x, t) in-
clude, in addition to any externally imposed
fields, the self-consistent fields produced by the
electron charge density and current.

We make the following simplifying assumptions:
(i) pext

= 0, and the external confining field B, is
uniform and in the z direction (B,=&P); (ii) the
equilibrium density n'(x) = fd'v f' is cylindrically
symmetric about an axis along Bo, and the equi-
librium is uniform in the z direction, with Sf '(x,
v)/az = 0 and B, Eo(x) = 0; and (iii) the equilibri-
um self-magnetic field Bm'(x) (which will result
from the azimuthal current associated with a ro-
tating electron gas) is negligible in comparison
with 8,. We first examine possible equilibria
within the context of these assumptions.

Equilibria. —Setting &f/St =0 in the Vlasov equa-
tion gives

(3)
~x m c &v

and

(6)L=m(xv -yv )-zmr 0
C

In (5) and (6) r = (x'+y')'" and Qe= -qB0/mc. In
principle, the choice of f (q') determines the
equilibrium electrostatic potential y (r) through
(4), i.e.,

———r —y'(r) = 4vqn'(r) = 4vq f d'v f0

Thus by specifying the functional dependence of
f ' on H and L a variety of equilibrium density
profiles n'(r) [and corresponding y'(r)] can be
constructed. Depending on the explicit form of
f ' these equilibria may (or may not) have density
profiles which are peaked on the axis of symme-
try, or shear in the angular velocity of rotation
of the electron gas about the axis. ' For present
purposes we limit considerations to a class of
equilibria for which

(8/Bx) ~ E0=4vq Jd vf (4)

Introducing a Cartesian coordinate system with

origin on the axis of symmetry and x and y axes
perpendicular to Bo, we see that any function

f '(H, L, v ) of the constants of motion H, L, and

satisfies (3), with

H= ,'mv '+-,'m-v '+qy'(r),
X

f'=f'(H ~ L, v ), ,R ' z ' (8)

where ~R = const. The meaning of this restric-
(5) tion from the fluid point of view is seen by calcu-

lating velocity moments of f'. Noting that

H-&u L=&m(v +&a y) +&m(v -e x) +zm{r (e II -v )+(2q/m)po(r)},R x R y R R c R

the mean velocities vx = (fd'vf ovx)(fd'vf') ' and vy
= (fd'vf Ovy)(fd'vf 0) ' are given by vx = -&uRy and

vy
= vgx for equilibria of the form (8), corresponding to a mean rigid rotation (with angular velocity

rug) of the election gas about the axis of symmetry. Even without specifying the form of f explicitly,
the choice of &up will influence p' and no. From (7) [taking p'(r=0) =0 and denoting no(r= 0) by no] it is
clear that if

(~ 0 —
&u ')/-,'(u '=1+e, 0(e«I,R c R '

p
(10)

where &up'=4vn0e'/m, the equilibrium density profile n'(r) is flat [n'(r) =n, ] with po(r) = —(m~ 2/4q)r2
for a broad interior region of the electron column. The explicit choice of fo determines the shape of
the boundary and, as we will show, the stability properties. To illustrate this point we consider two
particular distributions f [with (F(vz)dvz = 1]:

m m "'f'= — ~6 (H-—ur L)"2 — — V (v ), V )0,
2m 2 Vo R 2 0 z ' 0

and

(12)
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For Eq. (11), which we call case (a),

n'(r) =n, (t&p(r) = -(m(d '/4q)r',0' p

0&r &R,p'

me ' r
n (r) =0, q&P(r) = R ' 1+2ln-

4q p Rp

r&R,

where the column radius Rp is given by

R =W2 —(, , —1)

(13)

(14)

(15)

As such, it is only pertinent to interior wave dis-
turbances with (perpendicular) wavelengths short
compared with the length scale over which n'(r)
=n, remains a good approximation. These are
"body waves"; we study them to find stability
properties which have no analog in the fluid ap-
proach. There are of course other possible cal-
culations suggested by the Vlasov technique, in
particular the effect of finite temperature on the
surface waves and body waves which are found by
fluid theory. From (1) the perturbed distribution

f '" and the electric field E'" evolve according to

af"& af"& q p vx B' sf'(&
+v — +—Eo+

~t ~x m c ~v

in Eqs. (13) and (14). When p&R satisfies (10) R~
is large in units of the "Debye length" (V0/(dp)
and the density is uniform within the column.

Similar conclusions are reached for Eq. (12),
which we call distribution (b), with n'(r) virtually
constant until r =Rp, only now

(9/m)"' ((& 0 -(d
R

R c R

p co g(d
p p

The distribution (b) has a smooth boundary; n'(r)
drops to zero rapidly [-exp(-r'/4XD'), where
&D'= (4»n0e') 't&j for r &Rp»AD. If (10) is not
satisfied with e «1, the distribution (b) will be
bell shaped, rather than flat with a thin (XD) sur-
face thickness.

Thus the two equilibrium rotor frequencies
consistent with a flat density profile and a thin
boundary, given by Eq. (10) with e-0+, are

p

E (1&.

m ~v' (18)

E'"=4&rqf d'vf'"
~X

dv'(t) q p( ( ))
v(t) Bp

where v'(t'=t) = v, x'(t'=t) = x, x and v are inde-
pendent variables, and Ep(x'(t')) = -V((& is given
by Eq. (17). The linearized Vlasov equation (18)
may be written

in the electrostatic approximation. In (18) we al-
low the perturbations to generally depend on z.
Equation (18) may be solved by integrating along
the unperturbed orbits x'(t') and v'(t') defined by

dx'(t'), (,)

(d = (p = 2fI (I, + (1-2((& /g )&'~)
R + c p c (18)

f (&&( l(tl) l(tl) tl)

n'(r) = n„q&p(r) = —(m(p '/4q)r'. (17)

Which of the possible equilibria is occupied de-
pends on the experimental preparation of the sys-
tem '

For low density (2(dp'/Qc' «1), &u~ ——Ac and
u! = ((pp'/20 ); for Brillouin flow (2&up' = Qc'),
~+=co = 20 . We emphasize that the distribu-
tion (8) is only rigid rotor in the mean, and does
not imply zero temperature.

Perturbation analysis. —We now examine the
evolution of small-amplitude electrostatic per-
turbations about general equilibria of the form
(8) when (pR satisfies condition (10) (i.e. , p&R

(d+ or p&R -(d ). Ana1ysis will be restricted to
the interior region of the column where

(20)=—E((&(x'(t'), t'), f'(H p! L, v ). -
m ~V R ' z

Without presenting any of the details here Eq.
(20) may be integrated forward in time to deter-
mine f'"(x, v, t) in terms of E '" and initial values,
and the result substituted into Poisson's equa-
tion, (S/Sx) E('&=4»q Jf("dv. In the usual man-
ner~ a Fourier analysis in the position variable
x and a Laplace transformation in the time vari-
able t leads to a dispersion relation relating the
(complex) frequency (p and wave vector k. For
spatial perturbations with azimuthal harmonic
number t, the dielectric function Dt(k~, kz, (p) is
given by (4'n is the Bessel function)
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n=+~ 4n'e' t' f k v
)

s n(ur -(u ) s
+

D =1+ d3vt 21 )k + 'v ', v
l ' mk'g n (i&a -~

i
) zsv v ag

Pg Qo + z J

x[&u-l~ -k v —n(v -e )]R z z + (21)

where kz =(k '+k ')'" and k'=k '+kz'. The
variable vz defined by

v '= (2/m)(H-&u L) =(~ +~ y)'
R x R

+ (v -e x)'
y R

(22)

=-,0 ) corresponding to Brillouin flow, the di-
electric function (21) gives the dispersion rela-
tion

(z=~lQ ) =z (1+3k A. + )c P i 0
has been introduced in Eq. (21)9 and |d'v = 2v
x f dv f, v dv . The rigid-rotor frequency

v& appearing in (21) is either w or e accord-
ing as the equilibrium distribution f' corresponds
to rotation with u+ or e . It is clear that the
modes determined from the dispersion relation
Di(kz, k, &u) = 0 will differ for the two types of
equilibria, .'

The striking feature of the dielectric function
(21) is that it is identical to the corresponding
results for a neutral plasma in an external mag-
netic field, "using the algorithm

(23)

in this latter reference (and taking the positive
ions infinitely massive). Consequently, any elec-
trostatic mode or velocity-space instability
which involves a single species, for a plasma,
has its analog in a pure electron gas in situations
where the present analysis is applicable, and a
large body of neutral-plasma results may be ap-
plied virtually intact.

For example, when kz = 0 an equilibrium distri-
bution of the form (12) when substituted in (21)
gives the analog of the Bernstein-mode disper-
sion relation. " As such the associated modes
are pure oscillatory am+= 0) with Re&@-i&oft
=n[1+o.(n)](tv+-&u }, n=+I, +2, where

k 29/m

(k '6t/m) t ((u -(o )' 'I

when n(n) «1. It might also be noted in relation
to the distribution (12) that in the high-density
limit 2u&~'=0 ' (i.e. , ~+-&u -0+, &u&=~+=~

for wavelengths long compared with the Debye
length &D= (&/4nn0e')'"; thus the pure electron
gas exhibits plasma oscillations with the familiar
thermal corrections.

In contrast, an equilibrium distribution of the
form (ll) when substituted in (21} (again with kz
= 0) is unstable Nm&u )0) provided the electron
density is sufficiently high. In particular, mak-
ing the replacement (23) in the instability condi-
tion for the corresponding plasma problem, ' &"

we see that the electron gas is unstable provided
[~~'/(~+-~ )']) 6.62, i.e., (&u '/0 '))0.46,
which is a lower density thres old than in the
plasma case. Moreover the threshold is slightly
below the density corresponding to Brillouin flow
(2&up'= Ac') of the electron gas. The distribution
(11) and other distributions of the loss-cone
form" are especially revelant for mirror-con-
fined electron gases.

As a final example, if 2w f dv v f '(v ', v )
corresponds to two counterstreaming (in vz)
electron streams, as might be the case for an
electron beam reflecting from a magnetic mirror
and passing through the incoming beam, the fa-
miliar two-stream instability emerges from
(21). In particular, for 2n f dvi vlf 0(vi', vz)
= 2noi 5(v -u) + 5(v +u)) we have (for k = 0)

~'= 2[2k 'u'+v '+ ~ (v '+8k 'u')'"],
z P P P .z

which gives instability for kz' (~p'/u' with maxi-
mum growth rate am~)max= &uf, /2v 2.

The above examples form only a small subsec-
tion of the vast array of (body) instabilities and
waves characteristic of an electron gas. It is ap-
parent that a detailed survey and classification is
needed in this regard.

In conlcusion we note that the terminology
"electron plasma" must be appropriate when dis-
cussing a pure electron gas since the dispersive
properties and the phenomenon of Debye shield-
ing are quite analogous.
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