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We show that a reasonable generalization of the beta-function formula to the reaction
7t+& p+ C, combined with Adler's self-consistency condition, implies that trajectories
of opposite "normality" that can be connected by pion emission must have the same
slope, and that their intercepts must differ by a half-odd integer. The agreement with
experiment seems very good.

Lovelace' has recently derived a number of re-
lations among meson widths and masses by apply-
ing the Adler "self-consistency condition" to a
model of w n scattering based on the beta-func-
tion formula. s In this Letter we shall extend
Lovelace's arguments to a general scattering
process n+A-B+C and will show that they lead
to a remarkable quantization of Regge intercepts
and hadron masses.

We are going to require that the S matrix for
the process m'+A -B+C vanishes when the pion
four-momentum vanishes; so we are only inter-
ested in those invariant amplitudes for which this
condition is nontrivial. Such amplitudes only re-
ceive contributions from Regge trajectories in
the s channel whose normality is the same as
that of A and an s-wave pion, and hence opposite
to that of A, and similarly from trajectories in
the t and u channels whose normalities are oppo-
site to those of B and C, respectively. We will
assume that these amplitudes therefore receive
contributions from only one family of linear tra-
jectories (i.e. , one or more degenerate leading
trajectories and infinitely many parallel daugh-
ters) in each channel, and will call the leading
trajectories in these families aX(s), aI (&), and

ag(u). In the spirit of Ref. 3, we then expect
that each of these amplitudes may be represented
as a sum of terms of the form

I"(k+J -a (s)) I (I+J -a (t))

I(n+J +J -a (s)-a (t))

plus similar terms which depend on s, M and t, &~.

Here k, l, and n are constants (with n ~ 5+k)
which may be determined by noting that the low-
est resonances in the s and t channels which can
contribute to this term have spins k+ JA and E

N =n or n +1 or ~ ~ ~ . (2)

In the special case with A=B and X=I', Eq. (2)

+JB, so that k and l are integers, and that its
asymptotic behavior as ~s~ -~ with f fixed is
sa() ~, where 4=Jg+n —k. But & is a helicity
difference which can differ from JB by at most
an integer (in fact, the interesting amplitudes
have b, = Jg), so n is also an integer.

The requirement that the S matrix vanish when

p & = 0 may in some cases be achieved by a can-
cellation of s, t terms of the form of Eq. (I) with
the s, u and t, l terms. However, we have found
that the interesting invariant amplitude always
contains at least one s, t term which must sur-
vive any possible cancellation (if the whole am-
plitude is not to vanish) in the reactions' with A
= C = w, B =A~, H, g, etc. ; A = n, B = p, C = o; A = C
= N, B = m' and A =B = N, C = ~. Lovelace's work'
has already shown that this is true for A =B =C

(In all these examples it turns out that this
term has n =1, but we do not expect this always
to be the case. ) The problem of determining for
which amplitudes and n values cancellations are
possible at p~& = 0 is both important and difficult,
and will be left for future work. For the present
we will simply assume that for any pair of parti-
cles A. , B we can choose C so that at least one of
the invariant amplitudes has an s, t term which
is not cancelled at P~& =0 by other terms. The
vanishing of this term then requires that the I"

function in the denominator blows up when P7t~ =0,
i.e. , when s=mA', t=mB', u=mC'. Letting nAB
be the largest n value in any such term, we con-
clude that

(m&')+a (m&') = J&+J&+N~,
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teils us that

o.'(m )=J +~N (3)

Table I. Observed slopes and intercepts of pairs of
trajectories of opposite normality which can be con-
nected by single-pion emission.

Inserting this back into Eq. (2) we see that

AA BB AB' (4)

Since A and B can be any two particles, Eq. (4)
shows that the NAA are either all even or all odd
integers. (It was just to get this result that we
had to consider a completely general process VtA

-&C.) Both Lovelace and experiment agree that
when A =m and X=p the integer Nz~ in Eq. (3) is
unity; hence we conclude that NAA is always an
odd integer.

The power of Eq. (3) is revealed when we make
use of the fact that the external particle A is it-
self on a linear Regge trajectory to determine
mA . Eq. (3) then becomes

X""X/ A A A")~= A" AA

This must also be true for the particle A. of spin
JA on the parallel da~:ghter trajectory which lies
one unit below the A trajectory; so nX'/&A'
equals & (NAA Nzz), wh—ich is necessarily an in-
teger. If we had considered an external particle
lying on a trajectory in the X family, we would
similarly have found that nA'/nX' must be an in-
teger. This integer must then be unity, ' so

Trajectory n {s)
Difference of

intercept

p(f)
~{&,)

JP

V,+ 0.385)

0.46 + 0.85s
—0.02+ 0.85s

0.15+0.90s
—0.39+ 1.01s

0.34+ 0.83s
—0.19+0.77s
-0.25+ 0.91s
—0.77+ 0.90s
—0.68+ 0.95s

0.48

0.54

0.53

0.52
0.43

2 2 2= 2 2 ~mK*™K™j mB ™+m
p (d P

Mandelstam' has argued that a. model with lin-
ea.rly rising trajectories must have all trajecto-
ries parallel. This is not in outrageous disagree-
ment with the data (see Table I); so we may ten-
tatively suppose that all trajectories have the
same slope as the p trajectory, which [with m~
=0 and n&(0)=~] is just (2m&') '. Our result for
the Regge intercepts can then be converted into a
great many mass formulas, such as

m '=2m '; m =m +m

'=n
A X' (6) m '=Sm 2+m '; m '=Sm 2; etC. ,

and using this in (5) gives

X"'- A"'=' AA

Our conclusion then is that whenever particles on
one trajectory can decay by pion emission into
particles of opposite normality on another trajec-
tory, the two trajectories must have the same
slope and must have intercepts which differ by a
half-odd integer.

The comparison of these predictions with the
data' for four pairs of trajectories of opposite
normality is shown in Table I. Evidently there is
a real tendency for corresponding trajectories to
have the same slope, and an even stronger ten-
dency for their intercepts to differ by —,'. (The N&
trajectory does not seem to compare well with
the 4 trajectory, but this may be because its
Chew-Frautschi plot is not straight. ) Presumab-
ly the reason that we always get an intercept dif-
ference of z rather than 2, 2, etc. , is because we
are comparing the leading trajectories for each
set of intrinsic quantum numbers.

all of which seem to agree pretty well with ex-
periment.

We close with a few remarks:
(I) The great power of the condition imposed by

the partial conservation of axial-vector current
for one soft pion should perhaps not be so sur-
prising, for Mandelstam has already shown' that
this condition implies the current algebra results
for two soft pions.

(2) The mass formula mfa*' —mp' =mIf' —mz'
was derived by Lovelace~ by requiring that the
K~ scattering amplitude vanish for pK& =0 as
well as for @~i =0. However this derivation
leads to an inconsistency unless the masses are
SU(3) degenerate. Our derivation uses soft pions
only.

(3) We have not used the conditions of crossing
symmetry and the absence of exotic (e.g. , T =2)
resonances, except that these conditions play a
role in ruling out possible cancellations at p~I" =0
in processes like m-w scattering. However the
absence of T =2 resonances ensures that the m-m
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scattering amplitude at s =u =m~' and t =0 is pure
T =0 in the t channel, because at this point the
T =2 part of the amplitude arises solely from the
background s, u term, which vanishes at s =u =t
=m~' for all t. This implies that the pion expec-
tation value of the c term [A0, 8 A)" ] has no T =2
part and also explains why Lovelace found' a
scattering-length ratio ao/a2 close to -&~.

(4) The Lovelace-Veneziano model for n n-scat-
tering predicts that the p and a mesons do not
saturate the chiral commutation relations but on-
ly account for a fraction 2/w of the required value
of the sum over states. (This is for mv =0; for
the actual m~ this ratio is close to &.) It is
therefore a mystery why Lovelace gets essential-
ly the same value for the ratio of the p and 0

widths as was calculated' by using the chiral
commutation relations, throwing away all other
states. In particular, this current-algebra calcu-
lation gave for I' the "KSFR value" (about 135

p
MeV), while the Lovelace-Veneziano model pre-
dicts that I'& is less than this by the factor 2/m,

or rp= 90 MeV
We are grateful for discussions with S. Fubini.

*Work supported in part through funds provided by
the U. S. Atomic Energy Commission under Contract
No. AT(30-1) 2098, by the U. S. Office of Naval Re-
search under Contract No. Nonr-1866 (55), and by the
U. S. Air Force under Contract No. 49 (638)-1380.

)On leave of absence from the Institute di Fisica dell'
University, Firenze, Italy.

f.On leave of absence from the Weizmann Institute of
Science, Rehovoth, Israel.

~C. Lovelace, CERN Report No. TH950 (to be pub-
lished).

2S. Adler, Phys. Rev. 137, B1022 (1965).
3G. Veneziano, Nuovo Cimento 57A, 190 (1968); also

see S. Fubini, in "Comments on Nuclear and Particle
Physics" (to be published); G. Veneziano, to be pub-
lished; M. A. Virasoro, University of Wisconsin Re-
port No. COO-209 (to be published). For m-m scatter-
ing see J. Shapiro and J.Yellin, University of Califor-
nia Radiation Report No. UCRL 18500 (to be published).

Normality is defined as parity times (-P for bosons
1or times (—P 2 for fermions.

~For ~-N scattering we have used the results of Vira-
soro, Ref. 3.

6These Regge slopes and intercepts are determined
by using observed masses of the two lowest particles
in Chew-Frautschi plots, with particles assigned to
trajectories as suggested by Ref. 1 for p. For 4 and pf,
see V. Barger and D. Cline, Phys. Rev. 155, 1792
{1967). For K and ~, see B. French in the Proceed-
ings of the Fourteenth International Conference on High
Energy Physics Vienna, Austria, 1968 (European Or-
ganization for Nuclear Research, Geneva, Switzerland,
1968), p. 97. For Z, A, and Z&*, see P. D. B. Collins
and E. J. Squires, Regge Poles in Particle Physics
(Springer-Verlag, Berlin, Germany, 1968), p. 199.

YS. Mandelstam, Phys. Rev. 166, 1539 (1968), and to
be published.

S. Mandelsta~, Phys. Rev. 168, 1884 {1968).
~F. Gilman and H. Harari, Phys. Rev. 165, 1803

(1968); S. Weinberg, to be published.

REGGE CUTS AND FINITE ENERGY SUM RULES*

R. J. Rivers
The Enrico Fermi Institute, The University of Chicago, Chicago, Illinois

(Received 11 November 1968)

Including Regge-cut amplitudes in finite-energy sum rules for inelastic scattering we
examine the possibilities that either (a) they are built up by part of the direct-channel
resonance contributions, in which case they can significantly alter some of the bootstrap
predictions, or (b) they are built up by a nonresonant background, in which case mesons
with 7 = 2 are required that couple to the KK system.

There has recently been much discussion of fi-
nite-energy sum rules' (FESR). The FESR for
an invariant amplitude A (s, t) are derived from
the superconvergence of A(s, t)-R(s, t), the ampli-
tude minus its asymptotic Regge behavior R(s, t),
and state that

J. s ImA(s, t)ds = Jss ImR(s, t)ds . (I)

Equation (1) is valid for s iso, where so is the

lowest energy for which the Regge representation
of the amplitude is assumed valid.

For inelastic scattering it has been suggested
that ImA(s, t) and ImR(s, t) be approximated by
ImAres(s, t) and ImR ole(s, t), respectively,
where Ares(s, t) is the sum of direct channel res-
onances and Rpole(s, t) is the sum of the t-chan-
nel Regge-pole amplitudes. In a narrow-width
approximation with indefinitely rising trajecto-
ries the FESR then become "bootstrap" equa-


