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The equations describing the propagation of optical radiation through a medium of two-

level atoms are presented in a way that emphasizes their relation to Poynting's theorem.
Two classes of solutions which propagate without distortion are discussed. These solu-
tions, together with the well-known hyperbolic secant solution, are analogous to the
three possible types of motions of a simple pendulum.

su(x, t)/st v+S(x, t) =-E(x, I) sP(x, t)/st,

where u(x, t) is the energy density of the electromagnetic field, S(x, t) is its Poynting vector, and

E(x, t) is the electric-field strength.
For the case of a quasimonochromatic electromagnetic field linearly polarized in the e, direction

and propagating in the e, direction, one may write

E(x, I) =e,S(z, f ) cos(+t-kz), (2a)

(2b)

(2c)

u(x, t) = (e,/4m) 8'(z, f) cos'(~t kz), -
S(x, t) = (c/4v)(e, /p, )'"e,S'(.z, t) cos'(at kz). -

A more general expression for the field could be used; however, the solutions presented below can be
written in the form of Eq. (2a).

The state of a two-level atom may be expressed as

4(x, t) =a(t)ic, (x)+b(t)4 (x),

Consider a medium consisting of N two-level atoms per unit volume imbedded in a homogeneous di-
electric which is characterized by an index of refraction q =(eouo)'". It will be assumed that the mag-
netic permeability po is approximately equal to unity while the dielectric constant eo may differ from
unity. Conservation of energy for light propagating through such a medium is expressed by Poynting's
theorem'

where ya and gy are the eigenfunctions of the unperturbed atomic Hamiltonian, which correspond to
the eigenvalues —,'SQ and ——,'SQ, respectively. Alternately, the state of the atom may be represented by
the real variables X, E', and Z, which are defined according to'

Z =—aa*-bb*.

These variables satisfy the condition X'+ Y +Z' =1 when aa*+hb*=1.

(4a)

(4b)
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For an inhomogeneously broadened medium which is characterized by a normalized distribution func-
tion g(b.), the dipole moment per unit volume would be

P(x, t) =N p, f [X(z, t, n) cos(wt-kz)- Y(z, t,a) sin(~t-kz)]g(a)da, (5)

where X(z, t, n) and Y(z, t, b) are the variables defined in Eq. (4a) which refer to an atom with transi-
tion frequency Q=&u+b, . Substituting from Eqs. (2a), (2b), and (2c) and Eq. (5) into Eq. (1) and assum-

ing that X, Y, and 8 are slowly varying, one obtains

c aS 8$ 2' p&——(z, t) + (z,—t) = f „Y(z, t, ~)g(~)d~,
2i Sz ' St '

rP
(6a)

—k-~ S, t=,t, agenda, (6b)

after equating the coefficients of cos(~t-kz) and sin(~t-kz) separately. When an atomic system which
has a transition frequency 0 =~+a, experiences an electric field of the form of Eq. (2a), the variables
defined by Eqs. (4a) and (4b) evolve according to'

X(z, t, ~) = t.Y(Z, t, ~)-,

Y(z, t, Z) =m(Z, t, ~)+a 't $-(z, t)Z(z, t, ~),

i(z t ~)= a '-t1h-(Z t)Y(z, t, ~).

(Va)

(Vb)

(Vc)

The counter-rotating-wave approximation has been made in the derivation of Eqs. (Va), (Vb), and (7c).
It can be seen from Eqs. (7a) and (7b) that X(z, t, 6) is an odd function of n and therefore if g(A) is sym-
metric about a =0, Eq. (6b) reduces with &u =ck/2i.

McCall and Hahn have studied pulse solutions of equations similar to Eqs. (6a) and (6b) and (7a),
(Vb), and (7c) in great detail. This paper presents additional solutions of the equations which should
be useful in understanding the propagation of long pulses or cw light through matter. It has been found
that there are two simultaneous solutions of Eqs. (6a) and (6b) and Eqs. (Va), (7b), and (7c) which can
be expressed in terms of Jacobian elliptic functions. 4 The first type of solution may be written as

$(z, t) =8,an —t=;~,1 z
(8a)

267 1 z
(8b)

Y(z, t, h)=[(, » 2 2»» sn —t=;a cn —t=;A,2~2 1 z 1 z
(8c)

Z(z, t, a) =
-(2-A2+ a27') +2 dn' —t=; A

V

'[(~2 ~2~2)2 + 4g2T2]1/2 (8a)

where the definition

I/7 =- t1$,/2f

has been made. Physically, the above solution
corresponds to a cw electromagnetic wave whose
amplitude is modulated periodically [see Fig.
l(a) ] with a period

T = 27m(x),

where K(X) is the complete elliptic integral of the
first kind. This amplitude modulation is similar

to the optical nutation effect' in that it results
from the atoms periodically absorbing energy
from one part of the wave and then returning the
energy to an adjacent part. The amplitude-mod-
ulation function of Eq. (8a) is of special interest
because it propagates without distortion. For the
case of exact resonance, the angle through which
the vector (X, Y, Z) is turned during one period is

(IO)
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This fact suggests that the waveform of Eq. (Ba)
is the cw analog of McCall and Hahn's hyperbolic
secant pulse. ' In fact, as the modulus X approach-
es unity, the period of 8 approaches infinity and
the elliptic solutions go into McCall and Hahn's
solution, i.e.,

&o-

(1 —
& )6, .

6 = Kodn —{t-—„),)iI z

I

2K

6 = )i8ocnP-(t —-„);&
I j

3K 4K
—(t- —)

z
T

1 z 1 z t

lim 8 dn —t 'X -=—S sech —t= . (11)V' ' T V
A. —1

In the limit that ~ goes to zero, the arnplitude-
modulation function becomes constant:

(b)
K 4K

—(t- -)I z
T V

FIG. 1. Graphs of the two types of amplitude modu-
lation for case ~ = 0.8.

1 z
lim Sodn —t-—;A.

T V
(12)

1s

X= 2

(t 2 2 ~4)1/2 /

Y= 0,

(13a)

(13b)

and the solution (Bb), (Bc), and (Bd) becomes
1

v c Scg

J g(b, )dn
X

[(~2 t 2T2)2 ~ 4t12T2 ]1/2 (14)

-6T
(s'T2+ 4)'" ' (13c)

Equations (13a) and (13b) describe a polarization
which is locked in phase with respect to the ap-
plied field [see Eq. (5)]. This solution would be
an optical analogy of spin locking. '

An expression for the velocity of propagation
of the amplitude-modulation function may be
found by substituting Eqs. (Ba) and (Bc) into Eq.
(6a). One finds that the reciprocal of the velocity

If g(b, ) is not symmetric about 4=0, a disper-
sion equation of the form k =k(e) can be derived
by substituting Eqs. (Ba) and (Bb) into Eq. (6b).
The power transported by the amplitude-modulat-
ed wave of Eq. (Ba), averaged over a. period, is

(15)

where E(K) is the complete elliptic integral of the
second kind.

The second class of solutions of Eqs. (6a) and
(6b) and (7a), (7b), and (7c) may be written as

$(z, t) =XS,cn —t=;.&,
1 z

(16a)

26TZ 1 zX(, t, a) =[(I 2 „2 . , 2 2,, /2 cn —t1-AT) +46, T~ ] T v

1(z, t/&)=[( 2 2)2 2 2 21/2 sn t ——,'A. dll —t=~A2g 1 z 1 z
1-ttb T +46 T g -T v T

1-(1 +dPT2) +2 dn' —t=; A

g(z'/ / ' [(I g2 2)2 +4t 2 2y2]1/2

(16b)

(16c)

(16d)

Physically, this solution corresponds to a periodic amplitude modulation [see Fig. 1(b)] with a. period
given by

T =4Tff(~)

For the case of exact resonance, the vector (X, I', Z) is turned through the angle

(17)

f+~TK p g
(z, t)dt=0&-2K ~

during one period. These solutions approach the hyperbolic secant solutions as ~ goes to unity. The
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power transported by the waves, averaged over a period, is equal to

' „t'" '—'h(, , t)df= —'S. j'( '".(~ I)(.
4KTJ-2ftT 8v ' 8v ' R(g)

The reciprocal velocity of the modulation amplitude is given by

1 q 27rNa p, T
" g(b, )dh

v c hey, ~[(1 dP-T ) +46, T A. ] '

(18)

(19)

The solutions presented above' correspond to a simple undamped model. In a real solid, relaxation
effects would interfere with the coherent absorption and emission of radiation which is necessary for
distortionless propagation of light. In order to observe the propagation effects described here, it
would be necessary to have relaxation times long compared with the period of the amplitude-modula-
tion function. From Eq. (9) and the definition of r it is seen that rapid amplitude modulation can be

achieved in the presence of strong fields $0 = 2h/gT
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We have utilized the trapping of electrons on quantized vortex lines in rotating He II to
permit detection of single lines in order to study the appearance and disappearance of
the first few lines in a capillary rotating about its axis. It seems likely' that an exten-
sion of the method will permit study of the spatial distribution of vortices in rotating
vessels of He II.

It is widely believed that superfluid velocity
fields are irrotational everywhere except at sin-
gular lines around which the circulation is quan-
tized in units of Planck's constant divided by m,
the mass of a helium atom. ' For a cylindrical
bucket of helium, rotating about its symmetry
axis, theory predicts that as the angular veloci-
ty v is raised from zero, the helium should re-
main at rest until a first critical angular velocity
(which depends on the bucket radius R) is reached
Above this, the equilibrium state of the system
has a single vortex line along the axis; at higher
angular velocities more vortices appear. %hen

their number N is large it approaches &umR~/K

The most successful experiment carried out
under conditions where only a few vortices should
be present is probably that of Hess and Fairbank. '
They verified one prediction of the vortex picture
by finding the angular momentum of a, rotating
capillary to be lower than that corresponding to
rigid-body rotation. They did not, however, re-
solve any step structure associated with the ap-
pearance of single vortices. In rotating He II
electrons become trapped on structures which
inhibit their motion perpendicular to the axis of
rotation but which allow them to be mobile paral-
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