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incorporates detailed information about the two-
body interaction.
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Comparison of Ai coherent production in Freon with production in H2 implies a total
A&-nucleon cross section cr(A~M) -(0.5+0'23)&(&N} with a further theoretical uncertainty of
about 10%. The result appears to preclude the possibility, suggested by the Deck model,
that the p and ~ in the A& are produced close together without appreciable interaction be-
tween them.

Controversy surrounds the "A," bump' in the
(pm) mass spectrum observed in the reaction

m+N- (ps)+N.

It is difficult to establish that this bump is a par-
ticle, or resonance, for the following reasons:

(I) With the usually accepted quantum numbers
J&=1+, pm is the only available decay mode
for the A, . Thus a resonance cannot be confirmed
by observing alternative decay modes. 2

(2) A, has not been observed with convincing
statistics in other reactions (e.g. , w+P -A, +w

N)s

(3) There is a theoretical model, the Deck or
"diffraction dissociation" model, which predicts
a low-mass enhancement in Reaction (I). In this
model the outgoing p and m may be thought of as
close to one another in position and velocity be-
cause of the production mechanism and not be-
cause of any strong interaction between them. 4

If we are given two alternatives: (i) The A, is
a resonance, or (ii) it is a kinematic enhance-
ment with no strong pm interaction, then we
might settle the question by a measurement of
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G(q) =a Jdr p(r) exp[i5. (r)]exp[i5 (r)]e
z

-=aN(q) (4)

where p(r) is the nucleon density, ' and
2

5,(r) = f dz'f X p(x, y, z'),

5 (r)= f dz'f X p(x, y, z'}~ (5)

with fv (fA) the isospin-averaged mN (A,N) for-
ward scattering amplitude, '

A.„(Ag}the de brog-
lie wavelength of the m (A, ), and q the momentum
transfer from m to A, . The above formula ne-
glects correlations between nucleons and effects
arising from the finite range of the meson-nucle-
on interaction, as well as other intermediate
states of the fast-meson system. The differen-
tial cross section for production is then

( ~ ~ 2 6
coh free

and N(q) may be thought of as a nuclear form fac-
tor reduced by attenuation of the incoming and
outgoing wave. The quantity which is well deter-

the A, -nucleon total cross section o(A,N) W. e
shall see below that (ii) implies o(A,N) zl 7o. (mN)

Thus a o(A,N) substantially smaller than this
limit would impose alternative (i). The only way
to measure o(A,N) is to place a target nucleon
within a few fermis of the A, production point.
In practice this means to look at A, production in
an atomic nucleus; for high incident n energies
(&5 GeV/c} such processes may be described
simply by the "high-energy" model. ' We have
used this model to extract o(A,N) from available
data on coherent A, production by 16-GeV/c
pions.

The amplitude for A~ production on a single nu-
cleon, without charge exchange, is

g(q)=a+b a+cd, +Z. (rr„ (2)

where 5 and ~ are the nucleon spin and isospin,
and dependence on A, spin is left implicit. Aver-
aging the differential cross section d&r/dtfree
= fg f' over nucleon spin and charge gives

(do/dt) =
f a f2+

f
b fz+

f c f2+
f
Zfz ~

f a fz
free

where f a fz-=dao/dt is the isospin-0 exchange,
spin-nonf lip production cross section. In the
high-energy model the amplitude for coherent
production of an A, on an J= 0 nucleus of mass
number A is given to order 1/A by

mined by experiment is the total coherent cross
section ocoh= fdt(do/dt)coh F.or the nuclei con-
stituting Freon, we have found that Oeoh, as cal-
culated from Eq. (6), is insensitive to variations
in the shape of the nucleus, so that uncertainties
in that shape resulting from uncertainties in elec-
tromagnetic form factors and smearing effects
due to finite nucleon size do not alter our conclu-
sions. This insensitivity may be understood
qualitatively by noting that two compensating ef-
fects are at work. For fixed mass number A, the
bigger the nucleus, the smaller are the absorp-
tion effects, and therefore the bigger is f N(0) f .
On the other hand, a bigger nucleus means a
more rapid fall of

f N(q) f' with q. Thus ocoh
changes much less than (dv/dt)coh(0') as the as-
sumed nuclear shape varies.

Possible attractive and repulsive correlation
effects are the major sources of uncertainty in
the theoretical predictions, and that uncertainty
is about 10%%uo. Thus the high-energy model gives
a theoretical upper limit on the ratio

0' 0'
coh eoh

n=
(d~/dt)free qz = 0 Aofree

(7)

where q& is the momentum transfer perpendicu-
lar to the beam, and we have assumed (do/dt)free

Ao free exp(-Aqi'). ' Since all other parameters
are well-enough known, measuring g is tanta-
mount to setting an upper limit on v(A, N).

In order to understand the implications of alter-
native (ii) for o(A,N), we consider a simple mod-
el of the A, interaction with nucleons after forma-
tion. First, we suppose the p and m are produced
at the same point in coordinate space. They will
not separate appreciably on passing through the
nucleus, since their maximum relative trans-
verse velocity in the A, rest frame is about c; so
relativistic time dilation implies that they sepa-
rate by less than 1 F for every 16 F traveled by
the A, . A lower limit on the attenuation of the
(pm) system can be obtained by assuming that the
p and m remain exactly coincident during passage
through the nucleus and that they have the same
elastic scattering amplitude9 on a nucleon (taken
as an ima, ginary Gaussian function of qz). At a
given impact parameter, a p or a n. wave passing
a nucleon is attenuated by a factor e t5( }. We
assume that the coincident but noninteracting p
+w will be attenuated as e4t5(&}.' The result is
a(A,N) = 1.72m(mN). It is less than 2o(wN) because
of the partial opacity of the n for a nucleon pass-
ing through it.
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One might argue that the m and p will be charac-
teristically produced with a separation of about
1 F, since they form a system with orbital angu-
lar momentum zero and relative momentum
= l.a5 F '." Thus, sometimes the s (p) would be
produced inside the nucleus, and attenuated,
while the w (p) would be just on the edge and suf-
fer negligible attenuation. For such a production
configuration the apparent &r(A,N) would be sim-
ply a(sN) Ho.wever, in order to obtain the full
amplitude one must average over all configura-
tions.

To do this, we first compute the total cross
section on a nucleon for such a spread-out A~.
For a Gaussian pm wave function, our previous
result is modified to read

o(A,X) = c(sv)[a-O. aS/(1+ aa'&-')].

Here, ~ is the slope of the elastic mp differential
cross section, A. =0.36 F~, '~ and 3a~ is the mean
square radius of the pm system. In uniform nu-
clear matter, the above number, bigger than
1.7o(sN), would give the attenuation of the A,
beam. In a finite nucleus, however, the A, size
gives a blurred edge to the effective nucleon den-
sity distribution in Eqs. (4) and (5)." Offhand,
one might suppose that this wouM lead to en-
hanced A, production, but the total cross section
ocoh is nearly independent of nuclear surface dif-
fuseness, as mentioned earlier. Hence, if the
phase shift of an Ag on passing a nucleon is ob-
tained simply by adding the phase shifts due to p
and m, then analysis of coherent nuclear produc-
tion of A, using the high-energy model must yield
u(A, N) ~ 1.7o(wN).

The experimental value of q for p m produc-
tion at 16 GeV/c is obtained by comparing pro-
duction in a Freon bubble chamber'4 with a weight-
ed average of A,+ and A~ production in hydro-
gen." Defining the A, enhancement to be all
events observed in the mass interval 0.96-1.20
GeV, ' we obtain" g = 1.32 + 0.25 GeV' and deduce
the upper limit~

~(AP) - (O 5+,",)c(sX).

We conclude that the A, is not merely a p and a
w close together. Whether it is a conventional
resonance or a type of phenomenon yet unclassi-
fied, we leave to the reader.
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