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Several prescriptions have been pursued for approximating the nuclear deformation-
energy surface employing single-particle energies and wave functions. Theoretical argu-
ments are presented to demonstrate that such a program cannot be valid without utiliza-
tion of further information about the two-body potential. A numerical test is performed
on various approximative schemes; a11 were found to be substantially in error.

The problem of nuclear deformation-energy
surfaces has been of great interest, since it en-
ters directly into the description of nuclear col-
lective properties such as quadrupole moments,
vibrational force constants, and the entire fis-
sion process. Various techniques and prescrip-
tions are currently being utilized in attempts to
extract deformation energy from single-particle
models of the Nilsson type. '~ Such approaches
have been subject to practical ambiguities with
respect to the handling of saturation, the detailed
shape of the independent-particle model (IPM)
potential, etc. A partial resolution of these dif-
ficulties has been effected through the incorpora-
tion of various kinds of empirical data, averag-
ing procedures, etc. , in order to normalize or
determine model parameters.

Beyond practical difficulties, however, there
remain fundamental difficulties which appear to
severely limit, if not negate, the utility of such
programs. We proffer theoretical arguments and

numerical calculations in support of this asser-
tion. We emphasize, however, that this in no
way should be construed as casting any doubt on
the utility of Nilsson-type wave functions and en-
ergy levels in any context other than mapping out
the deformation-energy surface. When the nu-
clear deformation is known, the Nilsson wave
functions and energies appear to describe the
system very satisfactorily.

We present first an interpretation of the Nils-
son IPM. '&' We consider that there exists some
effective Hamiltonian

e=+P.'/2m+ —,
' Q v(x., x )= T+V.

that is amenable to Hartree-Fock (HF) calcula-
tions. Minimization of the expectation value of
II with respect to a determinental wave function
leads to the HF equations

tt0 (x)=~ 0 (x),

where

hg (x) =(P'/2m)|t ( )xP+,f d'xtt, *( 'x)v( xx')[tt, (x')0 (x)-g (x')~t, (x)]=-(t+u)g (x).n n n' n' n' n n n' n

The energy can be written

z=(e&=(7)+(v)=-,'g (~ +(nl tin))

= P &vs! t -,' +ln&u.
n (4b)

In general, the single-particle, HF, self-con-
sistent potential u will not be spherically sym-
metric but will contain multipole terms which we
denote symbolically by

Q Qo ~g

! For quadrupole deformations, in particular, q
= 2 Y» and the $ is then proportional to Nilsson's
P. (We will ignore the proportionality constant
in subsequent discussions. )

In order to study the energy of the system at
other than the minimum (equilibrium), it is nec-
essary to impose a constraint, say that certain
multipole moments Q =Qtqt (xt) have some pre-
scribed value

(e) =Q.
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Tras is equivalent to solving the problem de-
scribed by the Hamiltonian

where A is a Lagrange multiplier and AQ acts
like an external independent-particle potential.
Now the HF minimization procedure leads to the
equations

hg =~/,
n nn'

with

h = t+ u, + (X -E)q. (g)

u, and -$q are generated by the nucleon wave
functions but Aq is the Lagrange potential. The
energy is given in terms of the original Hamil-
tonian H, not X, and can be expressed variously
as

z = &e& = &x&-~ &q&

=-,'P (~ +@IfIn&)--,'~&q&

(10a)

(lob)

=-,'g &nI f+-,'u --,'gqIn&. (10c)

We identify $-A with ¹lsson's P. It is -Pq which
describes the potential deformation and gener-
ates deformation of the wave functions, but only
-(q is regenerated by the wave functions. In
order to calculate the energy, it is necessary to
know A and $ separately, not just P. This re-
quires a knowledge of the two-body potential. In
the hopes of circumventing assumptions about
the two-body potential, various prescriptions
have been advanced.

Equilibrium is attained for X =0 (no constraint),
and at those points

(sz/») = 0.&=0

One prescription' assumes that E is given by
analogy with (4a), namely

&9&=--',P (~ + @I fl~&) =E+-',&&0&.
n n

Although &8& =E at ) = 0, &g& does not achieve a,

minimum at A =0. In fact

a&8)
8X &=0

In order to test the degree of validity or failure
of various summation schemes, numerical cal-
culations were performed using an effective in-
teraction for which HF calculations had proved
quite successful in reproducing a variety of nu-
clear properties. Our conclusions here do not
depend upon detailed comparison with experi-
ment, however, but only require that the inter-
action be reasonable —and especially that it pro-
duce saturation. What is described below is a
numerical experiment: a comparison of an in-
ternally consistent model with various approxi-
mations to that model.

The HF calculations were carried out for Ne"
using the Tabakin' interaction, treating all 20
particles self-consistently, and using a space
consisting of six complete harmonic oscillator
shells plus the i„,~ shell. This space is suffi-
ciently large so that truncation effects are negli-
gible. ' Of the many possible configurations only
the lowest three were considered, namely those
in which the last four particles are placed in a
positive-parity orbit with m = 2, 2, or —', . The
results of starting with these configurations and
applying various Lagrange multipliers A are
shown in Fig. 1, where the energy &F& is plotted
as a function of &Q&. The m = —,

' solutions are
seen to fall on two branches, with the positive
deformation being lower in energy. One notes,
from Fig. 2, that the quadrupole moment is a
multivalued function of X and that there is a re-
gion of &Q& which is inaccessible without chang-
ing the single-particle level filling. The solid
portions of the curves indicate the configuration
which yields the minimal energy in that region
of &q&.
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FIG. 1. The energy as a function of quadrupole mo-
ment for various single-particle level fQlings.

800



VOLUME 22, NUMBER 15 PHYSICAL REVIE%' LETTERS 14 APRIL 1969

.6—

-60

-.2— -ISO

-420—

-440—

-.8—
I I [ I

-80 -60 -40 -20 0
MSV

BOrns

I

20
I

40
I

60

-460—

-480—

FIG. 2. The quadrupole moment as a function of the
Lagrange multiplier for various configurations.
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The comparison of the various schemes for ob-
taining the equilibrium deformation, Q„and the
shape of the deformation-energy surface is found
in Fig. 3. The correct procedure is, of course,
to plot the energy (If) as a function of (Q). The
true minimum is found to be Q, =0.73 b. (g),
which is (X+ —,'AQ), does not exhibit an extremum
as a function of (Q) in the neighborhood of Q„
and (3e), which is (H+ AQ), is seen to have only a
maximum, occuring at (Q) =0.34 b. It has been
suggested~ that Qo is characterized by a minimum
in the kinetic energy. There is a minimum of the
potential energy which occurs at (Q) =0.45 b, but
the kinetic energy has only a maximum in the
neighborhood of Q„namely at (Q) =0.38 b. The
most popular assumption~y' is that the variation
in E is given by the variation of the summation
of the single-particle energies +c in the figure).
[This assumption is exact for the very special
two-body interaction involved in the Ps (quad-
rupole) model, ' where the potential is quadratic
in each particle coordinate. The I'~ model can-
not be used for large deformation nor does the
P, interaction approximate the two-body interac-
tion generally employed in HF calculations. ] In-
deed, ps does exhibit a minimum but at (Q)

FIG. 3. Various energy-type quantities as a function
of (Q). (0) is the energy, (X)= (H+AQ), (8)= (H

+ aha), (Tl and (V) are the kinetic and potential ener-
gies, and Qe is the sum of the single-particle ener-
gies.

=0.53 b. Thus, quantitatively, none of the sug-
gested schemes lead to the actual Q, .

Another test of the various procedures is the
deformability, i.e. , the curvature of the various
functions near their minima. The Pe scheme,
which is the closest to being correct, has a cur-
vature which is 1.6 times that of the true energy
surface.

These calculations were performed on a light
nucleus in order that the basis states employed
be essentially a complete set. The failures of
the various prescriptions noted here probably
become more severe for a heavy nucleus at the
large deformations involved in the fission pro-
cess. The discrepancies there will be manifest-
ed in such crucial quantities as the position, en-
ergy, and curvature of the fission barrier and
even in qualitative questions regarding existence
of secondary minima.

We conclude that a quantitative calculation of
the deformation surface requires a model which
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incorporates detailed information about the two-
body interaction.
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Comparison of Ai coherent production in Freon with production in H2 implies a total
A&-nucleon cross section cr(A~M) -(0.5+0'23)&(&N} with a further theoretical uncertainty of
about 10%. The result appears to preclude the possibility, suggested by the Deck model,
that the p and ~ in the A& are produced close together without appreciable interaction be-
tween them.

Controversy surrounds the "A," bump' in the
(pm) mass spectrum observed in the reaction

m+N- (ps)+N.

It is difficult to establish that this bump is a par-
ticle, or resonance, for the following reasons:

(I) With the usually accepted quantum numbers
J&=1+, pm is the only available decay mode
for the A, . Thus a resonance cannot be confirmed
by observing alternative decay modes. 2

(2) A, has not been observed with convincing
statistics in other reactions (e.g. , w+P -A, +w

N)s

(3) There is a theoretical model, the Deck or
"diffraction dissociation" model, which predicts
a low-mass enhancement in Reaction (I). In this
model the outgoing p and m may be thought of as
close to one another in position and velocity be-
cause of the production mechanism and not be-
cause of any strong interaction between them. 4

If we are given two alternatives: (i) The A, is
a resonance, or (ii) it is a kinematic enhance-
ment with no strong pm interaction, then we
might settle the question by a measurement of
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