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stein modes with kLB in inhomogenous plasma col-
umns under conditions similar to the present experi-
ment are described by K. Mitani, H. Kubo, and S. Ta-
naka, J. Phys. Soc. Japan 19, 211 (1964}; S. J. Buchs-
baum and A. Hasegawa, Phys. Rev. Letters 12, 685
(1964), and Phys. Rev. 143, 303 (1966}; F. W. Craw-
ford, G. S. Kino, and H. H. Weiss, Phys. Rev. Letters
13, 229 (1964); S. Gruber and G. Bekefi, Phys. Fluids
11, 122 (1968).

5The plasma was the positive column of an 0.8-cm-
i.d. hot-cathode discharge in Ar or Hg at pressures
below 10 mTorr. The pump and stimulated radiation
propagated in a waveguide in the TEO& mode. Magnet-
ic field homogeneity was better than 0.2 Vo over the
section of the discharge contained by the waveguide.

6Coupling between extraordinary and plasma waves

near the upper hybrid frequency was observed by
A. Y. Wong and A. F. Kuckes, Phys. Rev. Letters 13,
306 (1964), and discussed by T. H. Stix, ibid. 15, 878
(1965), and H. H. Kuehl, Phys. Rev. 154, 124 (1967).
Absorption and stimulated emission at the upper hy-
brid frequency was directly measured by R. M. Hill,
D. E. Kaplan, and S. K. Ichiki, Phys. Rev. Letters 19,
154 {1967). The latter also report the unexplained ob-
servation that excitation at ~uh yielded stimulated
emission at frequencies ~~uh.

~S. Gruber, Phys. Fluids 11, 858 (1968); the appear-
ance of modes with ~ -2coz due to a particle-wave in-
stability excited by radiation at cu0 co& is described
by Anastassiades and Marshall, Ref. 2.

S. M. Harnberger, A. Malein, J. H. Adlam, and

M. Friedman, Phys. Rev. Letters 19, 350 (1967).
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The equilibrium of an axisymmetric toroidal plasma is analyzed. In the resistive re-
gime the diffusion rate derived by Pfirsch and Schliiter is modified when the plasma ro-
tates about its minor axis because of electric drift. In the weakly collisional regime the
electron-diffusion rate is greater than that derived by Galeev and Sagdeev, except in the
ambipolar condition where the diffusion rate is comparable with theirs.

The drift motions of ions and electrons in a to-
roidal magnetic field lead to a charge separation
in a toroidal plasma which must be neutralized
by current flow along the magnetic field. When
finite resistivity is included this neutralization
is not complete. Pfirsch and SchlQter' have
shown that the residual electrostatic field can
lead to a large enhancement of the diffusion rate
compared with that in a comparable straight
plasma column. In this and other papers'&' on
resistive diffusion in tori any density variation
over magnetic surfaces due to finite ion inertia
is neglected. The weak collisional case, where
collisions are too infrequent to produce an effec-
tive resistivity but are enough to prevent toroi-
dally trapped particle orbits, was investigated
recently by Galeev and Sagdeev. Here Landau
damping replaces resistivity. These authors in-
clude the density perturbation, but neglect any
potential variation„over magnetic surfaces.
This note considers the equilibrium of resistive
and weakly collisional toroidal plasmas, includ-
ing both density and potential variation over mag-
netic surfaces. Radial electrostatic fields pro-
ducing rotation of the toroidal plasma around its
minor axis, which are observed in most toroidal

confinement experiments, are included in the
equilibrium.

The coordinate system, illustrated in Fig. 1,
and magnetic field are the same as discussed in
Ref. 2. Relative to the (r, e, y) coordinates the
magnetic field is taken to be

B=(R /R)[0, & (r), a j, (&)
Oy

where R, is the radius of the magnetic axis, R
=R,(1+& cose), and e =r/R, . The displacement
of magnetic surfaces relative to the magnetic
axis in a realistic toroidal field will be neglected
for simplicity. Since the aspect ratio will be as-
sumed large, the equilibrium density and poten-
tial may be expanded as a series in e'.

n(r, e) =n, (r)+n, (r, e)+ ~ ~ ~,

e(r, e) = c,(r) + c,(r, e) + ". .

FIG. 1. The coordinates.
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Axial symmetry is assumed. It can be confirmed
from the later equations that the zero-order den-
sity and potential must be constant over magnet-
ic surfaces. Their radial distribution will be re-
garded as known, and the 8-dependent correc-
tions which result inevitably from the toroidal-
field variation will be deduced. Temperature is
assumed constant.

Resistive plasma equilibrium. —Quiding-center
equations will be used. The effect of finite-Lar-
mor-radius corrections on the equilibrium is
generally small and will be neglected in the fol-
lowing analysis. The mean guiding-center veloci-
ty of each species may be written in the form

v. =v. B/)Bi + v&, + v + v + ~ ~ ~, (3)
bj 0

where

2KT .

bj eBR z'

Since the mean guiding-center motion parallel
to the magnetic field is identical to the fluid ve-
locity, the fluid equation of motion and the gener-
alized Ohm's law may be used to describe this
motion:

nm . Bv. (e(. I sn

r 08a8 i e(2n r a8'
'v = ~(T-+T .) ——

EL} 8 KT
e

qj = —
I
—-4+ n2vjs8 1 ne 1

(7)

(8}

Subtracting Eq. (5) for the ions and electrons
gives

= 2r 2p"'
cos8.

ll ~ B,
After substituting for

j~~
in Eq. (8), n, and 4, may

readily be obtained from Eqs. (7), (8), and the
ion continuity Eq. (5). For example,

0
vC, xB v4, xB

B2 & 1 B2

no
n = ' -(U. +v ) cos8

Dv in

2KT . dn

V (nv .) = — sin8,

V (v ) = —V —~ (V4 xB)+1 (VxB) V4,
0 B 0 B2

2
= ——v sin8.

R 08

Since VxB is in the p direction, (VxB) ~ V4O=0.
Thu

(4)

s Bv.
(v ~ V)n +(vl V)n +n

0 Bs

2 fj,
=—

I
'+ n j sine, (5)

where

9 1 B 9 gal
8—=-(B V)—

Bs B rBB8 2m r88' (6)

The usual guiding-center collisional diffusion
across the field due to unlike particle collisions,
which contributes a diffusion equal to that in a
straight plasma column, ' is omitted for brevity.
ez is a unit vector in the z direction.

We now substitute Eq. (3) in the guiding-center
continuity equations V (nvj) = 0, retaining only
first-order terms in e. (the zero-order terms
vanish). Both v5 and vo contribute first-order
terms as follows:

1 0 P sin8

where

U c EL)
en s

v v ' 2m)'

KT. n
0

U
jn e.B n0

x(T. +T )i e
m,i

x (1+e cos8)'d8 (12)

2n qP'(2v )' c ' (me )~ U. -U.
0

/ /

8
/

/

M jn (13)B D &~f v '(2vj v
08

The factor D in the denominator of Eqs. (10)
and (13) may be understood as follows. In the
plasma frame the toroidal field structure ap-
pears as an m = 1 field variation rotating with an-
gular velocity -v08/r. Its wavelength along the
field lines corresponds to a wave number

k~~
=a~/

2nr. The density accumulation produced by this

The average outward flux across a magnetic sur-
face is

1
t

" (&4 2egT.
nv . =

2 J (n0+ n 1) + sine
1 j

Dj 2mrB 0 0 1 g8 e
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field variation will drive a forced oscillation of
the plasma, traveling in phase with the field
variation. The response of the plasma is inverse-
ly proportional to its dielectric constant. If the
dielectric constant in the rest frame of the plas-
ma is D(u, k))), then its response to the toroidal
field variation will be inversely proportional to
D( v08/r-, e~/2wr) T. he factor D is the dielectric
constant for ion-acoustic drift waves in an inho-
mogeneous plasma.

When vp 0 the diffusion rate agrees with that
derived by Pfirsch and Schluter. ' When D-O,
corresponding to the condition where the wave-
length and Doppler-shifted frequency seen by the
plasma coincide with a natural mode, the diffu-
sion will be much faster than the Pfirsch-Schlu-
ter rate. When finite-Larmor-radius effects and
ion-ion collisions are included in the analysis,
the factor D acquires a dissipative component
which would limit the response to resonant excita-
tion. However, these effects are very weak in
experimental conditions of interest. In practice
the resonant response mill be limited by non-lin-
ear effects, or by ion Landau damping which is
discussed in the next section.

The Pfirsch-Schluter diffusion rate clearly sat-
isfies energy balance, in that the resulting de-
crease in plasma internal energy just balances
the Ohmic dissipation q j'. '~ When density varies
over magnetic surfaces the Ohmic dissipation

E~~ jII may be greater than qj~~' because of the
pressure gradient in Eq. (8). In addition, the
zero-order electric drift transfers energy to the
plasma equal to fdr fv, ~ VPdS, whose sign is that
of D. Thus when D &0 the plasma feeds energy

into the electrostatic field, while when D&0 it ex-
tracts it. This partly explains the apparent anom-
aly that when D & 0 the diffusion given by Eq. (13)
is inwards. A potential distribution making D &0
would have to feed energy continually into the
plasma to maintain the E/B rotation. Such a po-
tential could therefore not occur naturally.

Weak collisional-plasma equilibrium. —If the
mean free path exceeds the connection length
2'/et, collisional resistivity becomes ineffec-
tive. The kinetic equations must then be used to
include any resonant particle effects. The equi-
librium and diffusion are significantly different
depending on whether collisions are sufficient to
prevent particle trapping in the toroidal field.
Only the case e "&Xmfpec/2wr &1, where no

trapped particles exist, will be considered here.
Collisions do not enter the analysis explicitly, '

but are necessary to justify the assumption of a
Maxwellian velocity distribution for particles
near the resonant velocity v

~~

= -v02w/ex. The
analysis follows similar lines to the resistive
problem, but is appreciably more complex. The
details will be published separately. Only an out-
line can be given here, but the similarity of the
results to those derived for the simpler resistive
problem may make them more plausible.

Taking a distribution function of the form f=f,
x (r, v)+ f, (r, 8, v), where f, =O(ef, ), the kinetic
equation is solved for f, in terms of 4z. Integrat-
ing f, gives the azimuthally varying part of the
density n, (r, 8) as defined in Eq. (2). Invoking
quasineutrality (rqi = ne1) gives an equation for
4, (r, 8), the 8-dependent part of the potential. 4,
is given by the real part of the equation

EVT

4 = . [U. I(z.)-U I(z )-U. (I )+v+{1(z,)-I(z )}+2(U. +v )z.'I(z )]e1 ev, &+iL in i en e in 0 i e zn Oz 2

where

-z z t . -z2 2 2

I(z) =1-2ze f e dt+iv wze

v 271

~RHIWlla

2gT ~t'2 T
c.=, &= —, F+iL=[(U +v )I(z )+~(U. +v )I(z.)]/v .

e
j rn. ' T.' en 0 e in 0 i 0'

2

I' +i I may be recognized as the dielectric constant for an m= 1 drift ion-acoustic mode with frequency
-v, /r and parallel wave number e~/2wr in a collisionless plasma. The imaginary term in f(z;) results
from the singularity in fl. (i't~) at ~ l =-v02w/eL. When f, is integrated over ~

~I
this singularity gives

rise to a Landau-type term. Such particles have zero azimuthal velocity and so are "resonant" with
the stationary field structure.

The radial diffusion is obtained from an equation similar to Eq. (12), except that now because of its
velocity dependence the curvature drift must be integrated over fi(8, v I). The average radial fluxes of
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ions and electrons across magnetic surfaces are found to be

tw ea.'c. 2v ( v ) S(S+ T) dn
nv . ~1+ /exp(-z. ') 1+0

2n

o m ea 'c..v 2n ( v ) Sexp(-z. m) ( v ) (rn „,I
G'+ L'(1+ 7'+ 2z.')'/r' dn

2n en i

(15)

where

S=l+v+2z. '(1+U /v ), 6=(1+7) I .-(1-I .I +2z.' ll+ lIi en 0'

and
2 2 tI .=1-2z.exp(-z. )J ~e dt

Oi i

is the real part of I(zf).
The ion diffusion rate is proportional to the ion Landau term, while the electron diffusion contains

terms proportional to both the ion and electron Landau terms [the latter have a factor (me/mf)'~'j.
This differs from the result obtained by Galeev and Sagdeev' for this regime. Their ion diffusion rate
is of the same order as given by Eq. (15), but their electron diffusion rate contains only electron Lan-
dau terms and so tends to be less than the ion rate because of the factor (me/m&)'I'. This difference
results from the neglect of a 8-dependent potential 4~(9) in their analysis. The ions and electrons are
then decoupled and the diffusion rate for each species is determined by the Landau damping for that
species. Since their electron and ion densities do not vary equally over magnetic surfaces, hence not
conserving quasineutrality, the neglect of 4, is inconsistent. The radial drift resulting from 84,/88
in Eq. (12) is common to both species and gives a common diffusion component proportional to the ion
Landau term.

Although the ion and electron diffusion rates are generally comparable, it may be seen from Eqs.
(15) and (16) that when the electron Landau term is neglected, the ion rate always exceeds the electron
rate. If there is no other source of loss, a radial space-charge field will quickly build up to bring the
two rates to equality. Equating Eqs. (15) and (16) gives the following equations for the ambipolar po-
tential distribution and the ambipolar diffusion rate (assuming zf-2):

v (1+T) (m
!

U (1 2z 2 2z 4) ( ) P(
2n i t 2

Kw az.'c. 2v fm )"* T(1 + 2z .') dni i i e i 2 0
nv = —— —

I ~ I 2(1+ r)+Da 8 r c (m) 1+2z.'+ 2z.4 d~'
2 2 2

(18)

Although for general v, the diffusion rate of both
species tends to be dominated by the ion Landau
term, the ambipolar potential reduces the coeffi-
cient (1+v0/Ufn) exp(-zf'), which is common to
all ion Landau terms, to a value of order (me/
mf)~~z. The resulting ambipolar rate is thus pro-
portional to the electron Landau term and is com-
parable with that given by Galeev and Sagdeev.

Comparison with experiments. —The preceding
analysis may be extended to stellarators by su-
perimposing a helical field on the toroidal varia-
tion. The expansion procedure used is equivalent
to a linearization in ct and Eg, and so the diffu-

sion produced by each field variation is indepen-
dent of the other. With existing stellarator pa-
rameters the toroidal diffusion is dominant.

With the exception of Wendelstein II, the mea-
sured diffusion in all existing stellarators ex-
ceeds the earlier theoretical estimates by one or
two orders of magnitude. In those with E = 3 wind-
ings the connection length is generally such that
the resistive theory should apply over most of the
cross section. The resonant enhancement over
the Pfirsch-Schluter rate requires a central po-
tential several times ~T/e, which is consistent
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with observation. At larger radii, where the
weak-collisional theory should in some cases be
applicable, lack of closure of the magnetic sur-
faces may allow an enhanced electron diffusion
rate to balance the higher ion diffusion rate. The
preceding theory thus provides a plausible expla-
nation of the observed diffusion in these devices.

D. Pfirsch and A. Schluter, Max-Planck Institute
Report No. MPI/PA/7/62, 1962 (unpublished).

G. Knorr, Phys. Fluids 8, 1334 (1965).
3M. D. Kruskal and R. M. Kulsrud, Phys. Fluids 1,

265 (1958).
4A. A. Galeev and R. Z. Sagdeev, Zh. Kksperim. i

Theor. Fiz. 53, 348 (1967) translation: Soviet Phys.
—JETP 26, 233 (1968)j.
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Cu-¹i alloys contain clusters of one type of atom. These clusters have a mean size of
44 atoms in an almost equiatomic alloy, annealed for 50 h at 300 C. At least 18% of the
alloy undergoes this segregation. These results are in accordance with many physical
properties of these alloys but throw some doubt on the conclusions of recent works about
the inapplicability of the rigid-band model to this system.

There have been many studies' ' of the physi-
cal properties of Cu-Ni alloys showing indirectly
that these solid solutions must include Ni-rich
clusters with a magnetic moment even in the
range of composition where the solid solution is
not ferromagnetic. Recently there have also been
several studies' ' on the optical properties of
Cu-Ni alloys with the explicit purpose of checking
the applicability of the rigid-band model' to this
system. We show here that these solid solutions
include clustered zones of one type of atom and
that one cannot rely too much on the discussion
of the results of the optical measurements. We
feel that the disagreement of the results with the
rigid-band model is still not conclusive.

In a recent work' using small-angle scattering
of x rays we have shown that there is clustering
of the atoms in Cu-Ni alloys. Fourier analysis
of the relative intensity gives pAA(r), the proba-
bility of finding an atom of type A at a distance
r from a given A atom. The plot of pAA(r) as a
function of x is similar to the one seen in Al-Ag
and in Al-Zn in the very first stage of precipita-
tion. '

There is another approach to the interpretation
of this scattering. " We assume spherical parti-
cles with a radius A, and a concentration C, of
one type of atom, say A, these particles being
surrounded by a spherical shell of outer radius
A, and a concentration C2 of A atoms. In this
model the intensity of the small-angle scattering
per cm' of the sample is given by

I= Nn'(f f)'-
x [exp(S'8 ~/10)-exp(S 8 '/10) I, (1)

where N is the number of particles per cm . n is
given by

where a is the lattice parameter, Co is the mean
concentration of A atoms, S =4m sin8/A, with 8 the
Bragg angle and A. the wavelength of the radiation,
and fA, fB are the scattering factors of the A and
B atoms, respectively.

We see that starting from zero Bragg angle the
intensity will rise with increasing angle, go
through a maximum at some angle 6I, and then
decrease at higher angles. This behavior of the
intensity is seen in Fig. 1, where we plot the log-
arithm of the intensity as a function of S'. The
plot is for the intensity per atom and is given in
electron units, i.e., in units of the Thomson scat-
tering of one electron. For values of 6I higher
than 8~ the intensity can be approximated by

I=Nn'(f f)~ exp[-S g'/5]. -
A B

This approximation should not be good for rela-
tively very high values of sin8/A. , where the scat-
tering falls down with S~.

In Fig. 1 we see than lnI is linear after 8~.
From the slope of the line we find R, =4.9 A and
from its intercept at S~ = 0 we get Nn' = 2.8 x10~'
cm '. Differentiating (1) with respect to S we
find a relation between A„g„and S =4& sin8~/

Taking 8~ from the intensity plot and the val-
ue of R, we find R, =30 A. Putting the values of
8, and R, in (2) we get a relation between C, and
C, (Co =0.50). In our alloy C, is somewhere be-


