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It is shown that the connection between even scattering lengths and 0 terms of current
algebra depends strongly upon dynamics. The ~ terms for 7tA and ~& scattering are
evaluated and shown to be consistent with a model algebra of current divergences in
which the SU(3)-symmetry breaking parameter is not small.

For the scattering of pions from any target,
current algebra provides a direct connection be-
tween the off-mass-shell. , crossing-even scat-
tering amplitude, T(v, q') at v =0, q' = 0, and the
o term (the commutator of an axial divergence
with an axial generator). To relate the matrix
elements of the g term to the physical scattering
lengths requires a continuation in both energy
and external mass. For mN scattering, it has
been found that the o terms and the effect of
mass and energy continuation are relatively
small. ' This Letter investigates the g terms
for mA and 7t Z scattering in order to obtain in-
formation about SU(3) symmetry breaking. It
is shown by explicit dispersion calculation using
experimental data that the mA scattering length
is not small and that there is no simple connec-
tion between the scattering length and the cr

term.
To investigate the 0 term, we evaluate direct-

ly the amplitudes for 7t A and mZ at the current-
algebra point rather than the scattering length
and compare with the algebra of current diver-
gencies of Gell-Mann, Oakes, and Renner.
Within the framework of their model, we elim-
inate the unknown matrix elements of the scalar
densities and compare directly differences of
amplitudes with a. specific function of the SU(3)
symmetry-breaking parameter c. Our results

give a lower bound, ] c] ~ 0.7, and are compat-
ible with the predicted value near -W2.

We consider first the mA system since it does
not have an unphysical region to complicate the
discussion. The mA scattering length has not
been measured directly from experiment, but it
is possible to draw some indirect conclusions.
Consider the forward n A scattering amplitude,
T(v). Some experimental information on T(v) is
available from the known F,* resonances. How-
ever for our purposes here, the most important
experimental information comes from Kim's
multichannel analysis of KN scattering near
threshold. ' This also provides the low-energy
nA and mZ amplitudes for I=0 and 1 which cou-
ple to the KN system. This information has been
shown to be compatible with the known features
of the 7|A and mZ systems' and the known KN to-
tal cross sections. 4 The simplest calculation is
to evaluate the experimental parametrization of
the mA amplitude at the mA threshold. This gives
a~A = &.7& F, ' which is large compared with oth-
er known meson-baryon scattering lengths, e.g. ,

a = 0.009, a ' = 0.093,
~N

a + =-0 29.
K+P

Even if the multichannel parameters are varied
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arbitrarily, it is found that a„A cannot be re-
duced below 1 F without altering significantly
the known KN scattering lengths. One may ob-
ject that Kim's parameters are determined from
data above KN threshold so that this procedure
involves an extrapolation of at least 180 MeV
(center-of-mass energy). To avoid this, we eval-
uate the following once-subtracted dispersion re-
lation for T(v) '.

ReT(v) =ReT(v )+T (v)
pole

2(v'-v ') ~ k'v'(r (v')dv'

(v"-v, ')(v"- v') '

where

pole (v '-v ')(v '-v') M

v = (s—u)/4M A is the lab energy, k = (v'- p')"'.
At threshold, T(V) =4m(1+ g/M~)a A. The sub-
traction point vp was chosen at KN threshold
since, at this point, Kim's analysis for ReT(v, )
is most accurate. For the integration below v~,
corresponding to total center-of-mass energy 8'
= 1600 MeV, we used Kim's Sz»p Pzg2& and P3»
partial waves. Above v& we used the known Y,*
resonances in the narrow-width approximation
and a constant background of 22 mb. We used~

g„A~'=21. The pole contribution is so small
that use of the pure-SU(3) value of 7 changes
a~A by only a few percent. (This coupling con-
stant plays a more important role in the current-
algebra calculation. ) Numerical evaluation of
Eq. (1) determines a„A=1.52 F. The separate
contributions are as follows: subtraction = -16.82,
pole =1.20, low energy=39. 77, resonances = -1.18,
and background= -1.47. This value is quite close
to the scattering length obtained by extrapolation
of the multichannel parametrization to the mA

threshold. This is perhaps not surprising con-
sidering that the S-wave mA amplitude contains
no resonances nor poles.

To reconcile this with current-algebra results,
we use the conventional definition of the off-
mass-shell amplitude applied to mA scattering,
denoted by TA(v, q'), where q' is the "external
pion mass. " The physical amplitude with q = p,

will sometimes be denoted TA(v). For the wA

system, the only baryon pole arises from the Z.
However, our whole calculation can be repeated
exactly for the crossing-even ~Z and mN ampli-
tudes. In these cases, the zero-mass limits are

taken by keeping the external baryon mass not

equal to the internal baryon masses which occur
in pole terms. The physical masses are insert-
ed at the end. It is well established that this
procedure yields the correct results for both
current-algebra' and consistency-condition cal-
culations' and will simplify our presentation.
The current algebra gives"

T(0, 0) =4if '(A([s & ', F5'][A&,
m p. p,

' 5
(2)

where f„ is the decay constant of the pion, ' F,
is an axial generator, and 8&A. &

is the diver-
gence of the weak axial current. To calculate
T(0, 0) using dispersion relation from physical
v A scattering data, we have to make a mass con-
tinuation of Eq. (2) to q'= p, '. It is conventional
to deal exactly with the Born term TB (v, q')
and use models for T-TBorn. The effect of
mass continuation for the latter part is expected
to be small on general grounds (order p, '/m A')
whether the q continuation is done for fixed v or
fixed s or some linear combination. This is sup-
ported by model calculations.

Before doing the mass continuation, we present
here a model-independent calculation for TA(0,
p'). TA(v, q') satisfies a once-subtracted disper-
sion relation which is the straightforward gener-
alization of Eq. (1). For crossing-even scatter-
ing amplitudes, the pole term in the dispersion
relation, Tpole(v, q'), and the Born term are not
the same because of the subtraction but are re-
lated by Tpole(v q') =TBo n(v q') TBorn(v0-, q').
For simPlicity, we use T v, Q' =-T v, q' -Tpole v,
q'). It is easy to check that use of the Born
term gives the same results, but with more al-
gebra. Figure 1 shows the results for ReTA(v,
p') between v = 0 and KN threshold, obtained
from the on-mass-shell dispersion relation Eq.
(1) using the experimental information described
earlier. (The multichannel parametrization is
also shown. Both methods agree well between
mA and KN threshold but clearly the parametri-
zation breaks down near the Z pole. ) The impor-
tant point is that the variation of TA(v, y, ') be-
tween v = 0 and threshold is large, ruling out any
simple relation between the o term and the scat-
tering length.

As stated, the effect of mass continuation,
namely fA(0, 0)-TA(0, p'), is expected to be
small. To check this statement, we made a dis-
persion calculation using a model originall, y sug-
gested by Adler" to calculate this difference. In
the dispersion relation, ImTAI(s, q2) =[/(s, q2)/
p(s, p2)]2f ImTAI(s, p ) for each partial wave,
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FIG. 1. Variation of the on-mass mA amplitude with-
out the pole term between p = 0 and the le threshold.
The solid curve is ReTg(v) calculated from dispersion
relation, the dashed curve is RefA(p) calculated from
extrapolating Kim's parametrization. LV is the center-
of-mass energy.

where P(s, q') is the center-of-mass momentum.
Although the model reporduces the proper thresh-
old behavior and is approximately true for Feyn-
man diagrams with direct- channel resonances,
it has no firm theoretical basis. The dispersion
relation contains one subtraction, ReT(v„q') for
which we also use the P f(s, q2) dependence.
The subtraction point is considerably above wA

threshold. We carefully avoid using any model
to directly extrapolate ReTA(v, q') for energies
at or below threshold. The result is that TA(0,
g')-TA(0, 0) =+0.83, which is negligible in com-
parison with that, TA(g, p, ')-TA(0, p, ') = 17.29,
due to the variation in v, confirming our pre-
vious statement. With g7t AZ' = 21, we finally ob-
tain TA(0, 0) =3.78 F.

Before turning to other applications, we quote
the result of a similar calculation for the even
mZ amplitudes, Since the v term is real and the
wZ scattering length is complex, naive extrapo-
lation of the amplitude is less appealing. Such
complications have been considered by others"
for the crossing-odd scattering length. We con-
sider the crossing-even mZ amplitude introduced
in Ref. 7, TZ =2T(I=1)-T(I=O). This choice is
made to eliminate the unknown I= 2 phase shifts.
Apart from the inclusion of both A and Z poles,

3 T -T

4f 'm -m
= —1-—

c (4)

If the evaluation of TZ and TA is taken serious-
ly, they imply c = -1.0. Realistically, however,
the difference of amplitudes is more sensitive to
details in our calculation than are the individual
terms or the scattering lengths. Although the
error in Eq. (4) is hard to establish, small val-
ues of c are definitely ruled out. Small values
of c imply a large difference of amplitudes. The
largest negative value for the left-hand side of
Eq. (4) is obtained by arbitrarily reducing the
high energy and pole contributions by 50 /p. This
gives c =+0.7. Similar considerations for the
largest positive value for Eq. (4) gives c = -0.8.

Thus we conclude here that although current
algebra makes a definite prediction for T(0, 0),
in general, the scattering length is not simply
related to this prediction and depends strongly
on the dynamics of the system. We have evalu. -
ated the g terms for mA and mZ scattering and
shown that they are consistent with the algebra, -
of-current divergencies of Gell-Mann, Oakes,
and Renner. The necessity of evaluating the g
term directly is emphasized by the fact that use
of the vN, vA, and sZ scattering lengths in Eq.
(4) gives a value for c of +0.04 (AZ), -0.08 (AN),
and +5.9 (ZN} as opposed to the predicted value

the discussion for mA can be repeated exactly.
We obtain Rea&Z = -0.18 F. The difference
ReTZ(u, p')-TZ(0, p, ) =-4.40 is found to be
large while TZ(0, g')-TZ(0, 0) = —1.08 is small.
With g„AZ'=21, we obtain TZ(0, 0) =3.98 F.

Possibly the most interesting application of the
results of this calculation is to the algebra of
current divergencies proposed by Gell-Mann,
Qakes, and Renner. ' They introduce a set of
scalar and pseudoscalar densities u ~ and v ~
forming a (3, 3*)$(3*,3) representation of SU(3}
@SU(3) which specify the a term. These opera-
tors also appear in the Hamiltonian density, X
=Qnv-u0-cu8. An important feature of the
model is that c, the SU(3)-symmetry breaking
parameter is not small, but near -v2. Applied
to Eq. (2), this algebra gives

T(0, 0) = (v~~2+c)f '(Blv&u0+u81B), (3)

where 8=N, A, or Z. If we assume that SU(3)
holds to the extent that the A and Z matrix ele-
ments of Kinv (and u~} are equal, mZ-mA = -c((Z I

xu8 IZ)-(A lu8I A)) so that
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near -vY or our value near -1.0.
Similar considerations are applicable to mN

and KN even scattering amplitudes. For the KN

case, in fact, one may avoid the difficulty of
comparing two small numbers since the small
factor &2+ c does not occur.
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We make a systematic test of soft-meson theorem predictions for both elastic and in-
elastic P-B threshold scattering amplitudes. The predictions are obtained by using an
extrapolation procedure developed by Fubini and Furlan and by ourselves. Our results
are in reasonable agreement with a theory of SU(3) SSU(3)-symmetry breaking proposed
recently by Gell-Mann, Oakes, and Renner.

In this paper we use the experimental values of
the real parts of 13 elastic and inelastic pseudo-
scalar meson scattering amplitudes,

P +B.-P +B
Q

evaluated at initial threshold, to test soft-meson
theorems. The details of our analysis will be
presented elsewhere.

The soft-meson theorems. —These are, as is
well known, deduced from the hypotheses of par-
tial conservation of axial-vector currents (PCAC)
and SU(3)S SU(3) charge algebra. ' In their exact
form they depend, not only upon the matrix ele-
ment of the equal-time commutator

but also on the customarily neglected matrix ele-

ment of the symmetrized equal-time commutator

+ l@,s„& (0)Jlf&. (3)

Here Qg' is the axial charge with the SU(3) quan-
tum numbers of Pp, and Az& is the axial current
associated with P~ In the SU.(3)SSU(3)-symme-
try limit the axial-vector currents are diver-
genceless and%~=0. Therefore, if one is to pre-.
dict the values of %~, it is obviously necessary
to have a theory of the symmetry breaking. Re-
cently Gell-Mann, Oakes, and Renner have shown'
that, if one makes the assumption that the sym-
metry-breaking term in the hadron energy densi-
ty transforms like a member of the representa-
tion (3, 3~)(3", 3), one may use the PCAC hy-
pothesis to calculate all the%~ up to a single pa-
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