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grams and the Delbriick amplitude %( ) is obtained to be

(3)

where S~(rl, qz) andS are precisely the photon
and the nuclear impact factors given by (2). A
comparison of (1) and (3) shows that the only ef-
fect of multiphoton exchange is the modification
of the two propagators. Thus the impact factor
appears to express an intrinsic property of a
particle.
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The Stanford Linear Accelerator Center 40-in. hydrogen bubble chamber was exposed
to 4.3-BeV positron-annihilation radiation. Results are presented on reactions contain-
ing no neutrals and one neutral particle in the final state. For yP- p P and cu P we find
cross sections of 19.2+ 1.2 and 2.8+ 0.5 pb, respectively. Assuming vector dominance,
we determine the V P cross sections. Evidence for other resonant states is presented,
in particular 4++V ~, where we find 6++p ~ /D++~ 7i about 1.5.

Previous studies of the photoproduction of mul-
tibody final states in bubble chambers were done
by using a bremsstrahlung beam. 'y In these
studies no cross sections could be given for re-
actions having a neutral particle in the final
state, except for some special cases such as w

production. Recently, in order to overcome this
difficulty, an e+-annihilation photon beam was
constructed at the Stanford Linear Accelerator
Center (SLAC) by the SLAC Group. ' Some re-
sults of the SLAC Group at photon energies of
5.2 and 7.5 BeV were already published. ' In the
present experiment we report on cross sections
and resonance production at 4.3 BeV. The SLAC
40-in. hydrogen bubble chamber was exposed to

a 4.3-BeV photon beam, obtained by the annihila-
tion of an 8.5-BeV/c (+0.5%) e+ beam in a liquid
H target. The beam details are given in Ref. 3.
A total of 400000 pictures were taken and the
present results are based upon the analysis of
about half the pictures. 5200 nuclear interac-
tions containing three or more prongs (or one
prong plus a V') were found in the above sample.
We estimate that about one-half of all our ob-
served nuclear events are due to the monochro-
matic photons resulting from the e+ annihilation.
Since the energy of the monochromatic photons
was known rather well (to within a2.5 Q), the ki-
nematical analysis was similar to the usual one
used for charged particle beams.
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Table I. Cross section for the three- and five-prong channelsa and resonances at 4.3 GeV.

Reaction Qb) Final State (pb) Final state (p,b)

0g ++

~+2~-~~d
p 7r 7r p

0~+7r p C, e

A,07r+n p

1.4+1.1
3.1 + 1.1
3.1+1.1
2.4+ 0.8
1.6 + 0.5
1.3 + 0.6

(A) yp p7r 7r 23 3y 1 3b p pb 19 2

(B) -pm+~-n' 21.6+ 1.4b f 0p «0.7 ~0.4
(C) n7r+x+m 12.1+ 0.9 gP «0.85 ~ 0.35
(D) -p2~+2n 5.3+ 0.6 Q++ 1.4 + 0.3
(E) p27r+27r 7r 7.0+ 0.7 ~0pb, c 2.8 +0.5
(F) n3g+27r 3,9+ 0.5 p a++ 3.2 + 0.8

aAmbiguous events were divided equally between the corresponding reactions.
Corrected for loss in forward direction: 2.1 pb for p and 0.4 pb for ~ .

d
Corrected also for ~ neutral decay mode (10%).
Of theSe, abOut 1.5 pb iS aSSOCiated prOduCtiOn: b ++p07r

w1 0Of these, about 1 pb is associated production: 4++~ 7r . No ~ w th ut 6++ d t' ( 'thpro uc &on (eit er in association or
interfering with) is seen.

A summary of the reactions studied so far and
the cross sections obtained is given in Table I.
For Reaction (A), vT agrees with previous deter-
minations. 'P For Reactions (B), (C), (E), and

(F), oT has not been measured before at 4.3
BeV. The photon flux was monitored by measur-
ing pairs every 100 pictures. A total of 12000
pairs were measured. In the present sample our
event flux at 4.3 BeV was about 20 events/pb. In
all channels listed in Table I the separation be-
tween the monochromatic and bremsstrahlung
events was very good. After ionization examina-
tion of all events, no events of Reaction (A) were
ambiguous, while 10 /c of Reaction (B}and 20$
of Reaction (C) remained ambiguous.

Photoproduction of p p. —The dominant channel
in Reaction (A) is the photoproduction of p me-
sons (-80%), as can be seen from Fig. 1(a),
where the 7r+v invariant mass is plotted for the
monochromatic events. A fit of the data with
Jackson-type Breit-Wigner resonances was rath-
er poor [P()(') =0.2%]. However, with a Ross-Sto-
dolsky mass-dependent term (-[M(p }/M(w+w )]']
we obtain a very good fit [P()(') = 85%]. Similar
results were obtained at DESY.' The p' central
mass and width from this fit are M(p ) =760+ 5
MeV, I =136+12 MeV.

The p' production angular distribution, da/dt',
is shown in Fig. 1(b). t' is it tm;ni, where t-is
the four-momentum transfer between the photon
and the p, and dmin is the minimum momentum
transfer for each given n+m mass. For small
M(w+w ), and in the po region, tm(n is essential-
ly zero and thus t' = t It is clea. r from Fig. 1(b)
that most of our data [up to t' '= 0.6 (BeV/e)']
could be well fitted by a curve of the type

-Bt'
do/dt' =Ae
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FIG. l. (a) M(7r 7r ) distribution for Reaction (A).
The solid curve represents best fit with p, fo, and g
resonances and phase space. Dashed curve is phase
space alone. (b) Differential cross section do/dt', for
p production LM(7r+7r ) =0.6-0.85 BeVJ. Curve is best
fit with the shape Ae ~, for the interval t' = 0.05-0.6
(BeV/&) . (c) The p -helicity density-matrix elements2 0

0m the p rest frame, as a function of the center-of-
mass production angle. Curves: predictions of strong
absorption model (Ref. 10). (d) ~(x+7r 7r ) distribution
for Reaction (B). The curve represents best fit with

0
wi a

Gaussian-shaped and phase space. (e) Observed der/
dI" for production fM(7r+n 7r ) =0.74-0.82 BeVj. The
curve is the theoretical prediction (see text). (f) cu

decay distribution for the helicity system, cos0&, in
the ~ rest frame. The curve: prediction of diffrac-
tion theory and OPE (see text).
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The drop in the first two bins is not considered
to be a real physical effect and is probably due to
a low scanning efficiency for events with invisi-
ble or very short proton recoil in the bubble
chamber (Rp(9 mm). Indeed, in the counter ex-
periments, ' no such drop was observed. A best
fit with Eq. (7) [for t' =0.05-0.6 (BeV/c)'] gives
A =145+15 pb (BeV/c) ', 8=7.6*0.5 (BeV/c)
These values are in good agreement with pre-
vious results. '~'~'~' In the vector-dominance
model (VDM)' the photon is assumed to be cou-
pled directly to the vector mesons (po, uP, rpo) and

thus the main contribution to p' photoproduction
will come from elastic (diffractive) p'p scatter-
ing and we can write

is usually assumed to be a constant and not to de-
pend upon t (we use the notations of Ref. 7). Us-
ing the recent Orsay value' y 2/4v =0.52+ 0.05 we

p
get C =3.5x10 '. Parametrizing the elastic p Pp
scattering in terms of a diffractive scattering of
a sphere of radius A and transparency e, we
have

R =48, a =&R (1—e),2 el 2 2

a /a = —,'(1-e) .

Further, from the optical theorem, assuming the
forward scattering to be pure imaginary (diffrac-
tive), we have

«(yp- p'P)/«=C da(p'P- p't)/«
p

nr 1 2 —1

PC
p y

2 4x137 4m
fJ

(2)
2 el0 do

16m
0

(4)

With Cp
= 3,5 x 10, we obtain from our data and

Eqs. (1)-(4)

a (p p-p p) =5.5+0.5 mb, a (p P) =29+2 mb, R =1.1+0.05 F, a =0.62+0.04.el 0 0 0

These values are in agreement with aT(pop) determinations' in photoproduction experiments on com-
plex nuclei and are similar to the parameters derived from m*P scattering data. ' Thus we conclude
that, within the framework of VDM, for pop scattering (as for pions), consistency of the slope of the
forward diffraction peak and the magnitude of da/dt at t =0 require a large transparency. One should
note that using the value y '/4w =1.1 + 0.2, as determined by the Cornell and SLAC' experiments on the
photo-p production in complex nuclei, and our measured forward hydrogen cross section of 145+ 15
Iub (BeV/c)-', we would obtain aT(pop) =42+ 5 mb. Taking az(p p) to be' 30+ 5 mb and y '/4n =1.1
would require the forward hydrogen cross section to be only 75+ 25 pb (BeV/c)

The slope 8 of the forward diffraction peak [0 ( t' (0.5 (BeV/c)'] decreases smoothly with increase
of M(v+v ) (see also Ref. 2). A similar smooth decrease is also observed when we plot 8 as a func-
tion of M(v+v P) in Reaction (B): 8 is about 8 for M in the region 0.6-0.8 BeV and drops to -1-2
(BeV/c) ' for masses around 2 BeV. A similar behavior was recently reported in charged-particle
reactions': While the mass plot shows many peaks, B as a function of M is smoothly decreasing. As
far as we know, the origin of this effect is still not understood.

The po-decay density-matrix elements, for the helicity system, are shown in Fig. 1(c), as function
of the p production angle (cos&c m ). For any simple diffraction model, including only spin-indepen-
dent interaction (like the one described above, or the strong absorption model), '0 the density matrix
elements in the Adair and helicity frames assume a particularly simple form:

A A A a, . 2

0, 0 ~1, -1 =Rep1, 0 0, PO 0
———,'sin 8

H, . 2 H
p =

4 sin 8, and Rep = -32 ' sin261-1 c.m. ' 1, 0 c.m. '

The agreement of our data [Fig. 1(c)] as well as other experiments'»~~'0 with these simple predictions
is not bad in general. More data, especial1y at higher ~, are required for the definite determination
of the importance of spin flip terms.
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Photoproduction of ~ p. —The invariant-mass
plot of the w+w wc combination in Reaction (B) is
shown in Fig. 1(d}. A fit by a Gaussian-shaped ~'
and phase space yields M(uP) =786+ 5 MeV and
(experimental) width of 40 MeV. The ~o produc-
tion angular distribution is shown in Fig. 1(e).
Again, some experimental loss of ~' events in
the forward direction is evident. o&(~ ) given in
Table I has been corrected for this loss as well
as for the ~0 neutral decay mode (10Q) . A fit of-Bt'the corrected data by a form do/dt'=Ae (con-
strained to give the total cross section A/B =2.8
+0.5 pb) yields A =20.5+4.5 pb (BeV/c} ', B
=7.4+1.2 (BeV/c) '. The results are in essen-
tial agreement with previous data. '~'~'

The interpretation of the (d data is more diffi-
cult, since (1) we have fewer events (by almost
an order of magnitude) and (2) the ~' production
mechanism is no longer pure diffraction and con-
tains one-pion exchange (OPE) contribution'~' (at
our energies). Thus, we have adopted the follow-
ing approach. In analogy with Eq. (2), within
VDM the diffractive part of ~0 photoproduction
can be written as

O

k

I

(a) yp~ vr-LV

h" decay

(b) yp Op
q' decoy

-1.0 -.6 -.2 .2 .6 I 0
coe ea"

-I.O -.6 -.2 .2
coo 8

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

36- (c) yp ~ pw+w-w'
(24+6) I( 6'
( &6 + 6) % P.S.

M ( r-vre) ( SeV)
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(d) yp pw+w- wo

(ll a5) 4 Is-
(83X5)& P.S.

20-

will be discussed here very briefly.
(1) w r++: Both o7 and do/df are in agree-

ment with the recent counter experiments. " The
h~ decay correlations, which could not be mea-
sured in the counter experiments, are shown in
Fig. 2(a) (see also Refs. 1 and 2). They yield
[for ~t~ & 0.2 (GeV/c)~] p»G =0.41+0.13. The ex-
pected value from OPE is 0.35.2 Our data are in

do(yp —(u'p)/dt = C do(co'p - (u'p)/dt. (2')

From SU(3) theory and &u'-I+I experiments' we
know that C&'.C~ =9:1. Thus we get C =0.39
x10 '. Further, from SU(3) and the usual &u'-yo
mixing we get Tppy I~py 1:9, neglecting the
ymy coupling. Since experimentally I ~~& =1
MeV, the OPE contribution to cu photoproduction
at 4.3 BeV is still significant whereas for p' it
can be neglected. Thus, combining the diffrac-
tive part of &uc production (assumed to be 10% of
the po) and the OPE contribution" (including ab-
sorption corrections) we get the theoretical pre
dictions for do/dt' [Fig 1(e)] an.d the decay dis-
tribution [Fig. 1(f)]. The agreement with experi-
ment is good and we conclude that our data are
consistent with the above model. A more critical
test of the theory will require much more data,
and will be performed at a later stage.

Subtracting the (calculated) OPE contribution
(1.2 pb), we can estimate from our data, using
Eq. (2') and (4), the ~'p cross sections. We get
oZ (uPp-ur'p) =4.1 a 1.4 mb and o7(upp) =27.4
+3.2 mb. These are close to our p p cross sec-
tions determined above.

Photoproduction of other resonances. —In addi-
tion to the dominant production of p and ~, sev-
eral other resonances have been observed and
their cross sections are given in Table I. They
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FIG. 2. (a) Decay distribution in the Gottfried-Jack-
son system (cos8 ) of 6 fM(pm+) =1.15-1.30 BeVj
produced in Reaction (A). Curve is best fit to the data.
(b) Adair-system decay distribution (coseA) cf g (M(w+w )=1.5-1.8 BeV) produced in Reaction (A). Curve is ex-
pected distribution for %~action production. 4~ re-
flection (5 events) was removed. (c), (d) p and 6++
production in Reaction (B) (~ events removed). Curves
are best fits by resonances and phase space. (c)M{p~+)
distribution. Shaded area represents p region lM (7I 7I )
=0.65-0.85 BeV]. {d) M{x 7I ) distribution. Shaded ar-
ea represents 4 region fM {p~ ) = 1.15-1.35 BeV].
{e),(f) ~ and 4 production in Reaction (E). Curves
are best fits by resonances and phase space, consider-
ing all possible self-reflections. (e) M(p7r+) distribu-
tion. (f) M(7I'+~ 7)0) distribution. Shaded area repre-
sents 6++ region.
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better agreement with OPE than those of Ref. 2.
(2) f'p and g p: A better fit to Fig. 1(a) is ob-

tained if one assumes that the peaks at the fo and

g position are due to resonances and not phase-
space fluctuations. However, our evidence for
the photoproduction of these resonances is incon-
clusive as yet (in Ref. 2, the estimate for f' was
0.4+0.3 pb). Our limits for f' and g cross sec-
tions are given in Table I. Their production an-
gular distribution is rather flat. The g meson,
being a Z =3 particle (presumably), can be
photoproduced by a Pomeranchukon exchange. In
such a case, its decay distribution in the Adair
system, neglecting spin effects, ' should be like
the spherical harmonic ~1', ~, P. This is shown

in Fig. 2(b) and is not inconsistent with our
(rather scarce) experimental data. Note that our
ratio o(g'p)/o(p'p), which is -5%, agrees with
other cases of inelastic/elastic ratios of Pomer-
anchukon exchange reactions. '3

(3) p 6++: This is presumably' due to OPE.
Substantial amounts of p 6++ production, bigger
than r 6++, are still visible at our energies
[see Figs. 2(c) and 2(d) and Table I]. In p h++

production a good p- mass fit is obtained without
Ross-Stodolsky factor. The result is M(p )
=775+15 MeV.

(4) Resonances in the five-prong events [Reac-
tions (D)-(F): These reactions are much more
complicated to analyze because of the high mul-
tiplicities. The outstanding resonances observed
are [see Figs. 2(e) and 2(f)] 6++, p', and &uo (Ta-
ble I). Some evidence for associated production
of these resonances is seen in our data [see Fig.
2(f) and Table I]. Our cross sections are more
or less in agreement with previous data, , '&' when
available. It is interesting to note that in the re-
actions yp- b, ++ Vow the ratio po/&u is about 1.5,
contrary to a ratio of -9/1 [explainable within
VDM and SU(3) ] for the diffractive part of the
"elastic" reactions, yp -p'p/&sop. This may
mean that exchanges other than Pomeranchukon
are responsible for the complex reactions.
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