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served following a Penning reaction. The polari-
zation of the ion should not be disturbed by radi-
ative processes'~; consequently, a large polari-
zation of the ion ground-state atoms can be ob-
tained. This technique should be applicable to a
wide variety of ions and provide a useful source
of beams of highly polarized ions. We finally
wish to point out that the electron that comes off
in the reaction should also be polarized. The
method of producing a polarized electron beam
introduced by Walters and his colleagues' could

be improved by several orders of magnitude by

the addition of an impurity such as Cd to the op-
tical-pumping cell.
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It is shown that a system made up of nuclei and electrons, the constituents of ordinary
matter, has a well-defined statistical-mechanically computed free energy per unit vol-
ume in the thermodynamic (bulk) limit. This proves that statistical mechanics, as de-
veloped by Gibbs, really leads to a proper thermodynamics for macroscopic systems.

In this note we wish to report the solution to a
classic problem lying at the foundations of statis-
tical mechanics.

Ever since the daring hypothesis of Gibbs and
others that the equilibrium properties of matter
could be completely described in terms of a
phase-space average, or partition function, Z
= Tre ~+, it was realized that there were grave
difficulties in justifying this assumption in terms
of basic microscopic dynamics and that such del-
icate matters as the ergodic conjecture stood in
the way. These questions have still not been sat-
isfactorily resolved, but more recently still an-
other problem about Z began to receive attention:
Assuming the validity of the partition function, is
it true that the resulting properties of matter
will be extensive and otherwise the same as those
postulated in the science of thermodynamics'? In
particular, does the thermodynamic, or bulk,
limit exist for the free energy derived from the

partition function, and if so, does it have the ap-
propriate convexity, i.e., stability properties?

To be precise, if N& are an unbounded, increas-
ing sequence of particle numbers, and 0& a se-
quence of reasonable domains (or boxes) of vol-
ume Vj such that Nj jVj-constant= p, does the
free energy per unit volume

f.= kT(V )'InZ(P, -N. , Q.).

approach a limit [called f(P, p) j as j-~, and is
this limit independent of the particular sequence
and shape of the domains? If so, is f convex in
the density p and concave in the temperature P '?
Convexity is the same as thermodynamic stability
(non-negative compressibility and specific heat).

Various authors have evolved a technique for
proving the above, '~' but always with one severe
drawback. It had to be assumed that the interpar-
ticle potentials were short range (in a manner to
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(classical mechanics), (2)

ED & BN -(quantum mechanics), (3)

where Eo is the ground-state energy in infinite
space. (Classical stability implies quantum-
mechanical stability, but not conversely. ) Heu-
ristically, stability insures against collapse.
From the mathematical point of view, it provides
a lower bound to ff in (I). We wish to emphasize
that stability of the Hamiltonian (If stability),
while necessary, is insufficient for assuring the
existence of thermodynamics. For example, it
is trivial to prove H stability for charged parti-
cles all of one sign, and it is equally obvious that
the thermodynamic limit does not exist in this
case.

It is not too difficult to prove classical and thus
also quantum-mechanical H stability for a wide
variety of short-range potentials or for charged
particles having a hard core. '~4 But real charged
particles require quantum mechanics and the re-
cent proof of H stability by Dyson and Lenard' is
as difficult as it is elegant. They show that sta-
bility will hold for any set of charges and masses
provided that the negative particles and/or the
positive ones are fermions.

The second requirement in the canonical proofs'
is that the potential be tempered, which is to say
that there exist a fixed ro and constants C ~ 0 and
e &0 such that if two groups of Na and Nb parti-
cles are separated by a distance r & ro, their in-
terparticle energy is bounded by

V(N SN ) V(N ) V(N )--
-(3+e}-Cr N Na b'

Tempering is roughly the antithesis of stability

be described precisely later), thereby excluding
the Coulomb potential which is the true potential
relevant for real matter. In this note we will in-
dicate the lines along which a proof for Coulomb
forces can be and has been constructed. The
proof itself, which is quite long, will be given
elsewhere. ' %e will also list here some addition-
al results for charged systems that go beyond the
existence and convexity of the limiting free energy.

To begin with, a sine qua non for thermodynam-
ics is the stability criterion on the N-body Hamil-
tonian B=&~+~. It is that there exists a con-
stant B ~ 0 such that for all N,

V(r, ~ ~, r )& BN-

because the requirements that the forces are not
too repulsive at infinity insures against "explo-
sion. " Coulomb forces are obviously not tem-
pered and for this reason the canonical proofs
have to be altered. Our proof, however, is valid
for a mixture of Coulomb and tempered potentials
and this will always be understood in the theo-
rems below. It is not altogether useless to in-
clude tempered potentials along with the true
Coulomb potentials because one might wish to
consider model systems in which ionized mole-
cules are the elementary particles.

Prior to explaining how to overcome the lack of
tempering we list the main theorems we are able
to prove. These are true classically as well as
quantum mechanically. But first three definitions
are needed:

(Dl) We consider s species of particles with
charges ef, particle numbers N('}, and densities
p( }. In the following N and p are a shorthand no-
tation for s-fold multiplets of numbers. The con-
ditions for H stability (see above) are assumed to
hold.

(D2} A neutral system is one for which Q sN('}
1

xef =0, alternatively Qlsp('~e =0.
(D3) The ordinary s-species grand canonical

partition function is

The neutral grand canonical partition function is
the same as (5) except that only neutral systems
enter the sum.

The theorems are the following:
(Tl) The canonical, thermodynamic limiting

free energy per unit volume f(P, p} exists for a
neutral system and is independent of the shape of
the domain for reasonable domains. Further-
more, f(p, p"', ps', ~ ~ ) is concave in p

—' and
jointly convex in the s variables (p(I), ~ ~ ~, p(s)).

(T2) The thermodynamic limiting microcanoni-
cal' entropy per unit volume exists for a neutral
system and is a concave function of the energy
per unit volume. It is also independent of domain
shape for reasonable shapes and it is equal to the
entropy computed from the canonical free ener-
gy.

(T3) The thermodynamic limiting free energy
per unit volume exists for both the ordinary and
the neutral grand canonical ensembles and are
independent of domain shape for reasonable do-
mains. Moreover, they are equal to each other
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D
z(v, n) -gz(N. , n.).

1 2'2 (6)

If 0 is partitioned into subdomains, as above,
plus "corridors" of thickness &~0 which are de-
void of particles, one can use (4) to obtain a use-
ful bound on the tempered part of the omitted in-
terdomain interaction energy. We will refer to
these energies as surface terms.

The normal choice' for the standard domains
are cubes Cj containing 1Vj particles, with Cj+ y

being composed of eight copies of Cj together
with corridors, and with Nj+ y =BN&. Neglecting
surface terms one would have from (6) and (1)

and to the neutral canonical free energy per unit

volume.
Theorem 3 states that systems which are not

charge neutral make a vanishingly small contri-
bution to the grand canonical free energy. While
this is quite reasonable physically, it does raise
an interesting point about nonuniform conver-
gence because the ordinary and neutral partition
functions are definitely not equal if we switch off
the charge before passing to the thermodynamic
limit, whereas they are equal if the limits are
taken in the reverse order.

An interesting question is how much can charge
neutrality be nonconserved before the free ener-
gy per unit volume deviates appreciably from its
neutral value? The answer is in theorem 4.

(T4) Consider the canonical free energy with a
surplus (i.e., imbalance) of charge Q and take
the thermodynamic limit in either of three ways:
(a) QV

— 0; (b) QV- ~; (c) qV- -const.
In case (a) the limit is the same as for the neu-
tral system while in case (b) the limit does not
exist, i.e., f-~. In case (c) the free energy ap-
proaches a limit equal to the neutral-system free
energy plus the energy of a surface layer of
charge Q as given by elementary electrostatics.

We turn now to a sketch of the method of proof
and will restrict ourselves here to the neutral
canonical ensemble. As usual, one first proves
the existence of the limit for a standard sequence
of domains. The limit for an arbitrary domain
is then easily arrived at by packing that domain
with the standard ones. The basic inequality that
is needed is that if a domain 0 containing N par-
ticles is partitioned into D domains Q~, Q2, ~ ~ ~,

OD containing N~, N2, ~ ~ ~, N~ particles, respec-
tively, and if the interdomain interaction be ne-
glected, then

Since f& is bounded below by H stability, (7) im-
plies the existence of a limit. To justify neglect
of the surface terms one makes the corridors in-
crease in thickness with increasing j; although

Vj~, the corridor volume, approaches ~ one
makes V c/V -0 in order that the limiting den-
sity not vanish. The positive e of (4) allows one

to accomplish these desiderata.
Obviously, such a strategy will fail with Cou-

lomb forces, but fortunately there is another
way to bound the interdomain energy. The essen-
tial point is that it is not necessary to bound this
energy for all possible states of the systems in
the subdomains; it is only necessary to bound the
"average" interaction between domains, which is
much easier. This is expressed mathematically
by using the Peierls-Bogoliubov inequality' to
show that

z(x, n) -e gz(N. , n.),
PUD

] 2 2
(8)

k 1k-1 2 k-2 +k 0'

and

where U is the average interdomain energy in an
ensemble where each domain is independent. U

consists of a Coulomb part, UC, and a tempered
part, U~, which can be readily bounded. '

We now make the observation, which is one of
the crucial steps in our proof, that independently
of charge symmetry UC will vanish if the subdo-
mains are spheres and are overall neutral. The
rotation invariance of the Hamiltonian will pro-
duce a spherically symmetric charge distribution
in each sphere and, as Newton' observed, two
such spheres would then interact as though their
total charges (which are zero) were concentrated
at their centers.

With this in mind we choose spheres for our
standard domains. Sphere S& will have radius R&
=p j with p an integer. The price we pay for us-
ing spheres instead of cubes is that a given one,
Sk, cannot be packed arbitrarily full with spheres
Sk y only. We prove, however, that it can be
packed arbitrarily closely (as k —~) if we use all
the previous spheres Sk ~, Sk 2, ~ ~ ~ So. Indeed
for the sequence of integers z&, p22, ~ ~ ~, nj
= (p-1)f Ip2~ we can show that we can simultane-
ously pack n& spheres Sk j into Sk for 1 -j «k.
The fractional volume of Sk occupied by the Sk-j
spheres is rp& =p &n&, and from (8) we then have

-3'

~«

j+& (7) ZV. =I.
1

(10)
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[Note that the inequality (6) is correct as it
stands for pure Coulomb forces because UC in

(8) is identically zero. If short-range potentials
are included there will also be surface terms,
as in the cube construction, but these present on-

ly a technical complication that can be handled in
the same manner as before. '] While Eq. (9) is
more complicated than (7), it is readily proven
explicitly that fk approaches a limit as k —~.
[Indeed, it follows from the theory of the renew-
al equation that (9) will have a limit if Qljyj
(m ]

The possibility of packing spheres this way is
provided by the following geometrical theorem
which plays the key role in our analysis. We
state it without proof, but we do so in d dimen-
sions generally and use the following notation:

Od =volume of a unit d-dimensional sphere =
3 /T

in three dimensions and od = (2 -1)2d 2.
(T5) Let p ~ ad+2 od be a positive integer.

For all positive integers j, define radii ~.=p ~

and integers n =(p-Ip Ip~(d-I). Then it is
possible to place simultaneously Uj(nj spheres of
radius r ) into a unit d-dimensional sphere so
that none of them overlap.

The minimum value of p required by the theo-
rem in three dimensions is 27.

Many of the ideas presented here had their gen-
esis at the Symposium on Exact Results in Statis-
tical Mechanics at Irvine, California, in 1968,
and we should like to thank our colleagues for
their encouragement and stimulation: M. E.

Fisher, R. Griffiths, O. Lanford, M. Mayer,
D. Ruelle, and especially A. Lenard.
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Superconductivity of barium is observed under high volume compression. The high-
pressure phase, BaII, has a T somewhat lower than 1.3'K at 55 kbar, T~ sharply ris-
ing with increase of pressure. A second solid phase above 140 kbar has a T~ of approxi-
mately 5'K.

Since the discovery of superconductivity in ce-
rium, barium was also thought to become super-
conducting under pressure. If there is a common
origin of superconductivity in neighboring lantha-
num and cerium it seemed worthwhile to look at
barium, naively assuming similar electronic
properties might exist if it were compressed to
the same density. ' The abnormal pressure de-
pendence of the electrical resistivity~ (cf. Fig. 1)
as well as the highly abnormal P-T phase diagram

showing two maxima of the melting temperature'
indicate fundamental changes of electronic struc-
ture with pressure.

The apparatus and procedure have been de-
scribed in a recent publication. ' Difficulties of
sample preparation and cell loading caused by the
chemical reactivity of barium as previously men-
tioned' were overcome by covering the thin (20-p)
metal strip with a film of petrolatum. Two disks
of Mylar foil (thickness 6 p. ) provide protection
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