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The coherent excitation of polaritons has been achieved in the III-V semiconductor GaP
for the first time by a nonlinear, optical parametric process. We are able to describe
the polariton dispersion curve in the ~-k space and to measure the absorption coefficient
of the crystal near the Reststrahl band. The results are discussed on the basis of re-
cent theories on the polariton disperson and damping in GaP.

A high-intensity, coherent polariton field has
been excited in the polar III-V semiconductor gal-
lium phosphide by mixing two coherent optical
waves whose wavelengths lie in the transmission
gap of the crystal. This method for the creation
in a medium of coherent, Raman-active optical
phonons or other elementary excitation is some-
times called "coherent excitation'. "

Four pairs of interacting frequencies have been
chosen in order to excite resonantly the polariza-
tion field near the lattice resonance (Reststrahl)
at 366 cm-' covering, in the lower branch of the
optical dispersion curve, a range of infrared

wavelengths in which the excitation exhibits a
mixed (electromagnetic and phonon) character. '&'

In our experiment (Fig. 1) two Raman cavities
pumped by a Q-switched ruby laser were used to
generate two (Stokes) beams of coherent light at
different frequencies (&u, and ~,). The two beams
were focused by a common high-quality achroma-
tic lens (20-cmf/I) in the crystal where the po-
lariton field at frequency ~& =~1-~2 is generat-
ed. Small diaphragms were used in front of the
lens in order to reduce the convergence of the
beams reaching the crystal to about 5 & 10
The angle 6 made by the two beams k~ and k, in
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FIG. 1. Schematic diagram of the experimental apparatus.
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the crystal was set to a previously calculated val-
ue in order to secure the phase matching of the
polariton generation process. 4 Small variations
of 0 were made possible in our experiment in a
simple and reproducible way in order to sweep
over the polariton resonance in the k-vector
space for each set of exciting frequencies. Val-
uable physical information about the dynamics of
the polariton field in GaP was thus obtained and
it will be discussed later in the paper. The exci-
tation of the coherent polariton field was probed
by a third beam kd of frequency ~d, that was fo-
cused by the common lens in the focal region of
the k, and the k, beams. The scattered beam Q~
at frequency &o~=ud+&uq (or ~z =~d-~q)' was an-
alyzed by a double-stage Jarrell-Ash Model No.
82-410 spectrometer and detected by a 56CVP
photomultiplier. For simplicity the kd beam was
supplied by one of the two Raman oscillators.
The direction of kd was calculated in order to
match the momentum-conservation requirement
for the polariton scattering process Q~ =kd + q'.
(We call q = q'+iq" the propagation vector of the

polariton at frequency ~q.) The direction of kd
could be easily changed to adjust the phase match-
ing during the experiment. A large-aperture
lens collected the Q~ beam focusing it on the
slit of the spectrometer. The filters A and 8
were used to block out the 6943-A radiation com-
ing from the laser. The GaP crystal was 6 mm

long and had its (311) direction parallel to the
lens axis. More details about the experimental
setup will be given in a forthcoming paper. The
intensities of the three interacting beams k1, k2,
kd were about 500 kW with a pulse width of 20
nsec. In these conditions the crystal did not suf-
fer damage on the surface. Working at a differ-
ence frequency of 354 cm ' (when the polariton
is very phononlike), at perfect phase matching
the energy of the scattered beam was 10 '-10 '
times the exciting beam intensity, a result
which is in order-of-magnitude agreement with

the anti-Stokes generation in usual stimulated-
Raman-scattering experiments. ' According to
the theory, the intensity of the kas beam was
found to be proportional to the product of the in-
tensities of the interacting beams, I1I2Id. The
materials used as Raman generators were some
highly Raman-active liquids. We list them to-
gether with the difference frequencies ~q'. nitro-
benzene-benzene (354 cm '), nitrobenzene-tolu-
ene (340 cm '), nitrobenzene-fluorobenzene (335
cm '), deuterated benzene-carbon disulfide (289
cm '). Before reporting the results of our mea-

sgrements made in GaP using the method de-
scribing above, we give a simplified theory of the
nonlinear process we are dealing with.

We assume that the two exciting beams Ey Sy
x exp(-ik~ ~ r), Em =$2 exp(-ik r) are not deplet-
ed along the interaction path. With this simplify-
ing hypothesis the growth of the polariton field
(E&, Q) is described by the following set of equa-
tions':

(d E CO K JL(,

2 q ~ q 0v+, E=- (~ -e )Qc' — q c' e 0

NL
pD Q=eE +E (v ),

q q

+Nd (E E *Q*+E E *Q*)].
d as (2)

N is the number of primitive cells per cm' and

the quantities dE and dQ are the nonlinear cou-
pling coefficients for the interactions. They can
be taken to be real and constant over the entire
range of infrared frequencies covered by our ex-
periment. ~ The nonlinear polarization and force
are given by

8
q

Solving the set (1) and taking E =0 at the bound-

ary r =0, we obtain the equation of evolution of
the polariton field in the following form:

x(exp(iraq" r)-exp( —q" r)J, (3)

Dq (4)0 40q -i&qI; p. is the reduced mass, and

e the electric charge associated with the TO lat-
tice mode at frequency e, . Q is the lattice dis-
placement within the primitive cell and Eq is its
associated electric field. PNl'(vq) snd FN1 (a&)
are, respectively, the nonlinear polarization at
frequency zq and the nonlinear force. The non-
linear interaction of the electromagnetic and pho-
non fields can be described in terms of a phenom-
enolpgical energy density function ~ U NL tha, t
for the overall process may be written in the
form

U — [d (EE sE e+E E sE s)NL
E 1 2 q das q
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where

4vw 2 ( (e -c )w 2d N)

b.q ' = (k, -k, ) —q'.
12q'I '

Equation (3) shows that, for Aq'=0, the polari-
ton field grows from zero to a maximum value

PS, h, *j~ 2q'~ (—@+i(q")j in a path about equal to
the inverse absorption coefficient n ' = 1/~ 2q"

~
.

For ~r ~& n ', Eq keeps consta. nt all along the
interaction path. A more precise analysis' that
takes into account the growth of the Stokes field
together with that of the idler E& shows that the
expression (3) is indeed appropriate to describe
the polariton growth if the absorption coefficient
n is larger than the "gain" of the Raman (or
parametric) process. This is always satisfied
in our case. This result is most important in our
experiment for the following reasons: (a) The
measurement of the physical quantities under in- .

vestigation (e.g., the infrared absorption coeffi-
cient n of the crystal or the nonlinear coupling
coefficients near the lattice resonance) is not af-
fected by surface effects because, in the less
favorable experimental condition, E& is zero at
the surface and small in the absorption layer.
The quantities measured in our experiment al-
ways correspond to the behavior of the bulk of
the crystal regardless of the large absorption of
the Reststrahl band. This consideration demon-
strates the interest of the present method against
the reflection methods of the linear and nonlinear
optical spectroscopy of solids' &" in proximity
of a lattice resonance. (b) The absence of an ex-
ponential gain of the polariton field rules out in

the analysis of the k-space resonance curves any
spurious effect due to the interaction.

The polariton scattering process may be con-
sidered in a way similar to the polariton genera-
tion process. We still assume that the diffusing
field Ed = Sd exp( —ikd- r) is not depleted along
the interaction path and the Maxwell equation for
the Eas field is found to be, to a good approxima-
tion,

ag~+ g Ea- as

4m(u '( e

6 Qp&~J d q' (4)

We can solve this equation by assuming, for sim-
plicity's sake and without loss of general valid-
ity of the results, that the fields E&,Ed, Eas
have a common direction of propagation in the
phase-matched condition. With this hypothesis
the solution of (4) leads to a simple expression
for the anti-Stokes intensity'.

(5)

(f = interaction path) apart from small terms pro-
portional to le ' and e '. In the above expres-
sion M~ is the phase mismatch of the optical
beams ky, k2, kd, kas corresponding to the polari-
ton phase mismatch ~q'. The value of the func-
tion depending on %~ in the expression of I~+,
for all the experimental conditions we consider
in the paper, is always near unity. The function

~
8

~

' in (5) gives the dependence of I~s on the non-
linear coefficients and on the phase mismatch

fo

(for /q'/»/q"/). For q" independent of q', [A/'
is a Lorentzian function of ~hq'~ and both the de-
termination of the position of its maximum in q'
space and the analysis of its width can give use-
ful information on some physical quantities of
the crystal. In our experiment for each frequen-
cy of the excited polariton field we produced
small variations ~hq'~ around a. preset, approxi-
mate value of

~
q'~ by varying the angle 0 in or-

! der to sweep over the polariton resonance (Ref.
4). By looking, for each polariton frequency, at
the curve of the anti-Stokes intensity determined
experimentally as a function of ~bq'~ we were
able to determine the true value of q' and the ab-
sorption coefficient of the crystal &=

~
2q" ~. This

last quantity is equal to the full width of the
Lorentzian function I~+(Aq'). Furthermore, the
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values of the maxima of the Ias(~q') curves cor-
responding to different polariton frequencies al-
lowed us to study the dispersion of the nonlinear
optical polarizability in the range of frequency
we investigated. ' We shall report about these
last quantities in a forthcoming paper. The per-
turbation on the value of the interaction path ~

introduced by the very small variation of 0 pro-
duced in order to describe the resonant curves
at various frequencies has been found to be neg-
ligible even with the largest absorptions we mea-
sured.

In Fig. 2 we report the dispersion curve of the

polariton near the Reststrahl band. The curve
a has been drawn on the basis of the infrared da-
ta given by Kleinman and Spitzer" by assuming
a constant damping of the lattice TO vibration.
Curve b has been drawn by Barker" as a result
of his recent theory that accounts for a more
complex damping process involving a frequency-
dependent damping constant I" in the expression
for the far-infrared dielectric constant of GaP.
Physically, that corresponds to including explic-
itly in the damping the effect of some particular

combination (two-phonon) bands of the spectrum.
Our experimental points lie very close to the
curve a in substantial agreement with earlier
Raman data of Henry and Hopfield. "

Figure 3 reports the results of our measure-
ment of ihe infrared absorption coefficient &

=~ 2q" ~. Curve a corresponds to the frequency-
independent damping theory (Kleinman and Spit-
zer") and b is again calculated on the basis of
the Barker's multiple-oscillator damping theory. "

As is shown by our experimental results in
Figs. 2 and 3 the simple model of a singleoscilla-
tor with constant damping, of Kleinman and Spit-
zer, " looks very satisfactory for GaP. However,
the resonance curve Ias(hq') corresponding to a
polariton frequency of 354 cm ' shows a substan-
tial asymmetric broadening in the lower part of
its quasi-Lorentzian profile toward increasing

~
q'~. This behavior is somewhat reminiscent of

an analogous asymmetric broadening in the fre-
quency domain and toward the lower frequency of
the 90 spontaneous Raman line from the TO
mode of GaP at 366 cm '." This effect has been
attributed" to a selective damping process in-
volving the two-phonon band TA(X) +LA(X) peaked
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FIG. 2. Dispersion curve of the LO phonons and po-

laritons in GaP. Curve a has been drawn on the basis
of the infrared data of Kleinman and Spitzer (Hef. 11).
Curve b has been drawn on the basis of the multiple-
oscillator theory for the lattice resonance [A. S. Bark-
er, Phys. H,ev. 118, 118 (1960)].

FIG. 3. Absorption coefficient of GaP versus wave-
length. Curves a and b correspond to curves a and b

of Fig. 2. Curve c shows the results of a previous ex-
perimental investigation on the absorption coefficient
of QaP using conventional methods {A.S. Barker, H,ef.
12). Curve c is reported without structure. Our exper-
imental points lie near the curve a.
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at a frequency of 357 cm '. Some interesting
considerations may be made by comparing in Fig.
3 the values of o. obtained in our experiment with
the experimental curve c obtained by Barker. ~

The branch of curve'4 c for A.
~ 32 p. has been ob-

tained by usual transmission and reflection meth-
ods." The branch of curve c nearest the TO res-
onance has been obtained by Kramers-Kronig
analysis of ref lectivity measurements. (In the
range of wavelengths 28-32 p, both methods have
been found by Barker" to give results insuffi-
ciently precise. ) As an explanation of the very
large discrepancy between our results (which
are essentially free from surface effects) and
the classical ref lectivity data, we may suggest
the existence of a very large anharmonicity of
the crystal near the surface with a large effect
of damping by two-phonon energy transfer.

An alternative method to our anti-Stokes tech-
nique of detecting the generation of the polariton
field should be the detection of the associated far-
infrared radiation outside the crystal. '~'~"~" Al-
though this effect couId be of some interest in it-
self, it will not lead to more physical informa-
tion on the polariton dynamics than has been giv-
en by our present method. " An experiment at-
tempting to detect outside the crystal the coher-
ent far-infrared ra.diation arising from polari-
tons in GaP is in progress in our laboratory.
We present in this Letter what we believe to be
the first experimental application of a new kind
of spectroscopy in solid-state physics: a spec-
troscopy in the momentum space. We believe
that this kind of spectroscopy should be of val-
uable interest for the study of elementary excita-
tions that exhibit a large group velocity.
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