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netic well and small shear in the inner part of the
plasma column. Fluctuations have in fact been
observed through ion cyclotron heating experi-
ments* and it has been stated that these could
well be flutelike with phase velocity in the ion di-
rection. (D) A properly modified version of the
modes discussed above may be utilized to explain
the recent observation of a mode with w<@y;,
phase velocity in the direction of the ion diamag-
netic velocity but “ballooning” in a region of un-
favorable curvature of the Livermore Levitron
toroidal experiment'® with T;>T,.

This paper has been stimulated by a recent
work® of Jukes, where the importance of ordering
©p;*/w?~wp;/w is pointed out in connection with
the stability of the “electron” (wp; <w<wpe) flute
mode and the fluctuations reported in Ref. 11.2
The author is also indebted to M. Rosenbluth and
P. Rutherford for valuable discussions and sug-
gestions, and to K. Allen and S. Yoshikawa for
private communications on their experiments.

*Work performed under the auspices of the U. S.
Atomic Energy Commission, Contract No. AT (30-1)—
1238.
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MUTUAL FRICTION IN Hell NEAR THE SUPERFLUID TRANSITION
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Measurements of supercritical heat flow in He Il are consistent with a mutal friction
constant which diverges near T). They also explain the apparent depression of T\ ob-
served by Erben and Pobell, and the “critical heat flux” near T reported by Bhagat and

Winer.

Recently, Erben and Pobell* (EP) reported a
depression by a heat current of the superfluid
transition temperature T, in He®, and Bhagat
and Winer? (BW) measured a “critical heat flux’
in He II by observing the formation of bubbles at
a heated wire. In the present communication,
measurements of the heat flux ¢ in a long cylin-
der of Hell, one end of which is at 7', and the
other end at T<T,, are reported. All three ex-
periments, as well as the results of Keller and

y
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Hammel (KH) near T,,* can be interpreted® in
terms of a Gorter-Mellink mutual friction con-
stant® which diverges near T,. Therefore, it is
not necessary to postulate a depression of T,
due to ¢ as proposed by EP,! and the BW results
need not be explained on the basis of a new criti-
cal velocity.?®

The present measurements were made in a
stainless steel capillary, 2X1072 cm i.d. and 4
X1072 cm o.d., suspended in a vacuum surround-
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ed by liquid helium at 1.2°K. Attached to one end
of the capillary and otherwise thermally isolated
was a reservoir filled with He Il which served as
a heat sink at a temperature T <T,. Here, T)-T
was measured to +107%°K,”s® and the heat flow ¢
through the helium in the capillary was deter-
mined from the rate of heating and the known
heat capacity of the reservoir. The temperature
T’ of the capillary 8 cm above the reservoir
could be regulated at T'-T) = 1072 °K. Because
of the relatively small thermal conductivity of
Hel, the capillary was at T) immediately below
this point, and the effective length of the super-
fluid column was 8 cm. This was verified by es-
tablishing experimentally that ¢ was independent
of T’ provided T’ > T). The results are shown
in Fig. 1 for 1.5 and 0.5 bar pressure.

Sufficiently close to T, the data can be repre-
sented by

X
q=b(TX_T) ] (1)

where x =1.077+ 0.014, and $=39.8+4.0 at 1.5
bar and 37.0+4 at 0.5 bar, for T,-T <107°°K

g is in W em ™! (°K)™!]. Thus, by extrapolation
it is expected that at saturated vapor pressure
b=36+4. At a temperature T,=T,~1.0x107%°K
there is a sharp transition to a different temper-
ature dependence, and x =0.821 and b =6.56 ac-
curately describe the data for 1.0x1073°K<T,
-T<15x1072°K at 1.5 bar.

The existence of two well-defined regions with
different temperature dependences of ¢ was ob-
served also by BW,? whose results are indicated
in Fig. 1 by the shaded area. In the region near
T), BW obtained the value x =1.14+ 0.04, which
is similar to the value obtained here. However,
the transition to the second region occurred at a
lower temperature (T, =T, =7X 10~3°K) and for
T<T,, BW found x =0.5. The results of KH® are
shown as well in Fig. 1. They, too, are consis-
tent with the existence of two regions, one near
T, with x =1.08 and consistent with the present
measurement, and one further below T, this
time with x =0.35. The transition occurs at T,
-T,=10"!°K.? The combination of these various
results strongly suggests that near T, where x
appears geometry independent, all three experi-
ments measure an intrinsic property of HeIl, and
that outside this region there are geometry de-
pendent effects which do not permit a simple in-
terpretation.®

In order to explain the intrinsic behavior above

T,., we consider the phenomenological approach
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FIG. 1. The heat flux ¢ in W em™2 as a function of
T»~T in °K on logarithmic scales, for Bhagat and Win-
er (Ref. 2), Erben and Pobell (Ref. 1), Keller and Ham-~
mel (Ref. 3), and this work. The solid and dashed lines
are obtained by scaling the present results according
to qOCL"l/m, with m =3 and 4, respectively.

first suggested by Gorter and Mellink.* They
found that g « (grad T) 1/m, m =3, and suggested
that this relation can be understood on the basis
of a mutual friction force between the normal
fluid and the superfluid proportional to (vg-v, )",
where vg and v, are the super- and normal-fluid
velocities, respectively. Extensive investiga-
tions by others®:!'71® have confirmed and extend-
ed the earlier ideas, and the relation!”
/m
s

/mA ~1/m (grad T) 1

1
q=p ST(S/p,) (2)
seems firmly established provided viscosity ef-
fects are negligible. However, values of m be-
tween 35! and 4141518 have been obtained, and
the Gorter-Mellink constant A is found to be tem-
perature dependent and to increase upon approach-

ing T,.*s* Therefore, A will be written as
a
A=a(T, -T)", (3)

and m will be kept arbitrary. It is known!®-2!
that

Py =k(Tx—T)2’3. (4)

Near T,, where S, T, and p, are essentially con-
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stant, Eq. (2) can be integrated, and yields, with
the aid of Eqs. (3) and (4), for heat flow between
T, and T in a tube of uniform cross section,

g=r5Tls/0 a1V, (5)
where
y=1-a+2m/3, (6)

and where L is the tube length. The same rela-
tion results for radial heat flow into an unbound-
ed volume of Hell in a cylindrical geometry
where T =T, at a radial distance R from the axis.
Here, however, L=R/(m—1), and ¢ is the power
density at R. Equation (5) implies that, at con-
stant T', ¢q «L=1/m  The present results were
scaled to the lengths appropriate for the other
experiments [LBW =2.5x107%/(m~1) cm, Lgp
=0.7 cm, Lgg=1.9 cm], and yield for m =3 and
4 the solid and dotted lines, respectively, in Fig.
1. Although L differs by a factor of about 10* be-
tween the present and the BW experiment, good
agreement with all the data is obtained, especial-
ly for m =4.

For the Gorter-Mellink mutual friction con-
stant® A [Eq. (3)] the present data yield @ =-0.23
+0.04, ¢=31+10if m =3, and o =-0.64+ 0.04,
a=0.45+0.18 if m =4. The combination of avail-
able evidence seems to indicate that m varies
from about 3 at low temperatures to about 4 at
T,. It is evident that comparison of A as deter-
mined here with previous data is possible only if
the same value of m is used. Such a comparison
with the data of Vinen!! (m =3) indicates that the
present data are lower by a factor of about 3
near T, . However, Vinen’s estimates are based
upon g « (grad 7')/® at large ¢.'®* His results at
small ¢ and 2.111°K yield a value of A smaller
than that reported by him by a factor of about
2.5, and thus are in agreement with the present
result. The strong dependence of A upon m
makes it difficult to interpret A in a physically
significant manner, unless insight is gained into
the behavior of m, especially as a function of 7.%2

It is concluded that the results of Bhagat and
Winer,! Erben and Pobell,? Keller and Hammel®
near T,, and the present work are all consistent
with a diverging mutual friction constant. How-
ever, the detailed behavior of the mutual friction
force® cannot be characterized because informa-
tion on the dependence of ¢ on grad T is inade-
quate at present.
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