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FLUCTUATIONS IN MULTIPOLE CONFINED PLASMAS*
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We propose an explanation for different types of fluctuations observed in multipole ex-
periments based on a new formal solution of the general integral equation that yields,
besides the known hydromagnetic mode types, modes with frequency smaller than the
average ion slow-excursion frequency. The relevant modes are of flute type, have fre-
quency range and phase velocity in agreement with observation, and become almost
purely growing and unlikely to be observed as Quctuations in conditions where these
have not been detected.

A considerable number of experiments of plas-
ma confinement have been recently carried out in
multipole configurations. ' These are generally
axisymmetric and have current conductors inside
the plasma that generate a stable magnetic con-
figura, tion, from the hydroma. gnetic point of view.
The observations have shown in all cases the ex-
istence of anomalous particle losses, i.e., not
due to simple collisional effects, and in the case
of quadrupole configurations, the appearance of
fluctuations which are extended over the entire
length of the magnetic field lines and have differ-
ent phase velocity for different experimental sit-
uations. In the following analysis we will find a
set of modes that allow an explanation for most
of these observations. The relationship of the
obtained results to the previously known ones' '
is given and their applications to experiments
other than multipoles indicated.

To represent the situation of a multipole with-
out magnetic shear we consider a. plane, two-
dimensional equilibrium configuration for a low-

p collisionless plasma, '~'~' where B= B(l, r1), l

representing the distance along the lines of force
and x& the direction of the density gradient. The

lines of force are closed so that all particle or-
bits along them are periodic. We make use of
the Vlasov equation 8f/8 t + v Vf+ (e/m) (if + v x B)
~ V„f=P, where the notation is standard. The
equilibrium distribution is chosen as fp =np(pe)
/(mT)"'exp( E/T), wher-e Ev~~' v+'1, the total
particle energy, and p&, the angular momentum
in the direction of symmetry, a,re constants of
the motion. Then we look for electrostatic modes
such that 8= -VC and 4 = y(l, r1) exp(ikr8+i~t),
where r8 represents the direction of (axi)symme-
try. These modes are assumed to be localized
around a point rz =r p such that ky» 8 y/8 rz and

y(r1, l) = p(rp, l); so we neglect from here on the

xz dependence of p. We consider very low fre-
quencies such that MDZ & N &Nbs &Qz where nz is
the ion cyclotron frequency, ~b; is average ion
excursion frequency along the lines of force, and
CoD~= k&D~, 8» being an average ion magnetic-
curvature drift frequency. In particular, arbz- vth i/L, L being the connection length, i.e. ,
the typical distance between a minimum and a
successive maximum of the magnetic field, and

vDi-aivthi/Rc where ai=vthi/~i is the ion gy-
roradius and R~ is a typical local radius of cur-
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vature. Now we notice that in a realistic multipole configuration'~' L-R&, so that the above inequality
implies ka &1 and, in particular, (ka )'«&dD '/&d'. Since we know that for ka &1 the finite gyroradius
contribution is of order (kai)', we can neglect it in comparison with that of the curvature drift that con-
tributes at least terms of order &dDi /&d'. On this basis we can simply solve the linearized perturbed
Vlasov equation by integration along the guiding center orbits' and obtain

f . = -(e.f ./ T.)Jy(l)-i( &d- &d .)f dt' y(l') exp[i&d(t'-t) i (t, &d .dt ),

where j=e or i, l'=l(t') is the guiding-center trajectory as a function of t', &d~. = (kc-T /e B.n)/(dn/p

dr&)0 is the "diamagnetic" fre&luency, &dD= kv D, and vD= va(l (t')) is the curvature drift velocity.
Now since ~&(dgi&~ye, we expand y and vD in harmonics of the orbit periodicity' so that, for in-,
stance, y(l) =QC (n)(E, g) exp(27&int'/v), where 4 (")(E, p) = (1/r) f dt'y(l(t')) exp(-2»int'/r), t'= f dl/
v~~, T= fdl/v~~, &dD(l) =g&dD(n)(E, &&&) exp(in&dl&t'), and &dl&(E, p) = 27&/v. Then we have to lowest order'
fji = (effOj-/Tf ) 4'(l)-(&d-&d f)P (E, p)/[&d+ &d@j @(E,p)]j. The dispersion relation is derived by the
quasineutrality condition ne ~ =n;y and is given by the integral equation

&d -&d &d . + &d . &d(1-T /T. )*e Di Di e i ~)0( ) 2+ &o&(1 T /T. )-~ &o&2T /T
Di e i Di e i

T
~(l)-(C "'&;—

T
—'

Now indicating by (&Io)av the space-averaging operation (fdic&)/(Bgdl/B) we split &Io into p+ p so that
&&o has zero average over gdl/B. Then separating the average and periodic parts of Eq. (1), we have

where (x&=n, 'fd'vf x= (1/27&no)OdEdpfoxB/~ v~~~, with the convention that contributions from posi-
tive and negative values of v)~ are to be added,

~ v[~~
= (E ~)"', and p =v~'/B, the magnetic moment.

In the limit »Di the above equation reduces to

&d &d &d t
&d T &d

i i i
I

*i e *i
T.

l

&d &o&2&) t' &d T &d

Di e'
l

(2)

T
+ (l) (@&o» [((~ &o&

&d )+ + &d
&o&@&o& ((~ &o&@&o&&)

& JT, cu Di Di Di Di
l

%e have considered that'

since

and recall that the positive sign of

kM.c & dy
Z

"i Di "i e 8&l B

determines the condition for hydromagnetic stability against interchange modes. Here y is a proper
coordinate replacing xz and measuring the magnetic flux through a surface perpendicular to the lines
of force and having a unit length along the 6 direction, so that d&l&= Bdrz, y is the magnetic potential,
B=Vy, and dl= dX/B. Now we consider the case where &dDi' &((&dDi&o"&)av as being particularly rele-
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vant to configurations with shallow magnetic wells such as quadrupoles, and the limit y &y, which im-
plies Tea+IwDI/TIId' &1 according to Eq. (3). Then the right-hand side of Eq. (3) reduces to Te&u~I
x (v&. "')/T.sly in lowest order and its solution can be formally expressed asD2 2

R+ .CO

G(l
e *2 D2

),
2

where we define (Q~,)'=—(((&uD OI)'))av and G(l) is real a finite function of l that deyends on the detailed
geometry of the system. On the other hand, we can write the last term on the left-hand side of Eq. (2)
as being proportional to

dEdp, co . @
f dig/iv i dl9I(l)

II
f B(u . "' dig(l)0

D"'
gdl/v, ) R J J ""

g
=

a
II

(d T. {g)

-p l 4@)

e *i

after seeing that (IdD;"') represents to lowest order the right-hand side of Eq. (4). Therefore Eq. (3)
becomes

(d co T.
"f »» ~(I-T,/T, .) T,((i/7)'-((+ "'/Vl'&) „

and we arrive at the dispersion relation
2 A 2 2

F- — 1- + & =0
0 co (d T. (d (d T . *2

where I'= (G(l)' —([GIO']'))av is positive definite for
the Schwarz inequality and finite for 8 having fi-
nite variation along l, and e, is the dielectric
constant. The finite solutions of Eq. (4) are

1 T/T. ~D-
1 e i

0 2 gi f +2'

wllel eB) = MD &dg /h&~. ~ and D =—(1—T /T ) —41
x(Te/TI)(1+zo). For order-of-magnitude esti-
mates we can write w= (1/Rc)avRc'/2x„, where
r„ is the density-gradient scale distance, (1/
Rc)av the average magnetic curvature, and Rc
a typical local radius of curvature. Therefore:

(a) U I (w+ 1) & (1—T /T ) T '(4T ), an alge-
braically unstable mode is obtained, independent-
ly of wave-particle resonance effects. Notice
that the real part of the frequency gives a phase
velocity in the direction of the electron diamag-
netic velocity for Te & T2 and, a phase velocity in
the ion direction for Ti) Te.

In regions of fairly deep well depth this mode
becomes almost purely growing with rate y= ~~i
x (I'Id*fTe/(Id~l)Tl)'" that is decreasing as the
well depth increases. These conditions are like-

ly to be realized in an octopole configuration"
for most of the region between the separatrix
((~) and the critical surface ((crit) which limits
the region of hydromagnetic stability, ' and are
likely to be realized sufficiently close to gs for a
quadrupole which has a shallower magnetic well. '
Notice that the condition qI/y= ~*z&DDlTeG/'~ TI.
&1 is verified for ~»&GQ», i.e., (1/Rc)av&G/
R~. Moreover, a mode of this kind is unlikely to
be observed as a fluctuation, a fact that agrees
with the lack of detected fluctuations in octopoles
and in the inner regions of quadrupoles. Mathe-
matically, this mode identifies with the known
trapped-particle mode, ' losing its fluted feature
and becoming more and more localized, ' as one
proceeds" further toward gs.

(b) If (T /4Te)(1 Te/T )'& (w+ 1)I—, a condition
that can be realized in regions of shallow magnet-
ic well and for relatively large values of Te/TI.
or T /T, Eq. (4) gives two purely oscillating
modes. One can see that they have phase veloc-
ity in the direction of the ion diamagnetic veloc-
ity or to the contrary, depending on whether TI/
Te &1 or Te/TI & l. It is important to notice that
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the two modes are of opposite energy, i.e., posi-
tive and negative, so that we expect that, adding
to the present theory the proper'&' ion Landau-
damping effects, one of the two modes be un-
stable. In fact, the wave energy is proportional
to (dB Ep/8 QP cc((d /(dg f)[l- Te/Tq-2((u+ 1)(u/(u+f]
~+(1-Te/T~)-D and the dielectric constant, in-
cluding the effects of resonance between the wave
and the ions with orbit frequency &ub(E, p) = ~p,
is (see Ref. 10) el=op-i((u-&u*f)&/lvl, where &

is a positive definite quantity of order (&u~eQD, G)'

[l ~l &obf'(1+ Te/T, ) ] '. In this case the disper-
sion relation can be solved by perturbation ob-
taining

and

5&d = i[—D + (2m + 1+T /T, ) ]&0e i 0

From all this it is reasonable to expect the ob-
servation of flutelike fluctuations in quadrupole
configurations where the magnetic well depth is
shallow over a sufficiently large region and when

Tz/Te or Te/T; are sufficiently larger than 1.
(c) The significance of the two large roots of

Eq. (4) can be understood by assuming that Rc'
& L' so that (ka;)'- &uD '/&u'. Then following the
treatment of Ref. 10, to include the finite ion gy-
roradius and finite Debye-length effects we ar-
rive at the complete dispersion relation

(5)

where b =k&'af' and &D is the ion Debye length.
Now we can see that the two mentioned roots are
essentially the hydromagnetic flute modes that

come from balancing the second against the
fourth term in the expression for c,. The disper-
sion relation Eq. (5) has several interesting prop-
erties which we will not discuss here. In particu-
lar, if we consider the limit Te/Tz « I and the
low-density regime where the Debye-length ef-
fects are important, we find that if typically O'AD

& [r~(l/R )] ~', a residual instability associated
with the term 6 is obtained. 4~' Unlike the case
for the modes considered under points (a) and (b),
the periodic part jo of the eigenmode does not af-
fect itslstability and can be neglected, since Te/
T.«1 and ~ is independent of T . So now d is

~ 10
e'

- t'
determined by the periodicity of exp(if~ (uD;dt)
along Jdf/& and is of the order ltd/&b;I'&D ~b;
One can also obtain a fluidlike, nonresidual insta-
bility with e' = —&Dz'&u~~/(kXD)' by balancing the
first and third terms of Eq. (5) in the appropriate
asymptotic limit. All this is consistent with the
observation of an ion flute mode in both quadru-
pole and octopole configurations at very low den-
sities. ""

In addition, the modes discussed in (a) and (b)
can explain the following: (1) The appearance of a
fluctuation in the General Atomic toroidal quadru-
pole configuration" whereas none was observed
for equal plasma conditions in the octopole. In
particular, the observed fluctuation is of flute
type, has co&Co&, for T &Te has phase velocity

in the direction of the ion diamagnetic velocity,
and exists in conditions where the finite-Debye-
length effects mentions under point (c) are not
important. (2) The observation of fluctuations in
the Princeton linear quadrupole" configuration
whi-h are of flute type, have co & S~;, exist for Te
& Tz and have phase velocity in the direction of
the electron diamagnetic velocity, and disappear
for Te-T~. (3) The observation of fluctuations
which are extended to the entire length of the
lines of force in the Culham quadrupole" configu-
ration operating with T~ & Te. Although no definite
result is yet available on the phase velocity and

frequency of oscillation, preliminary indications
appear to be consistent with the present theory.

We also notice that (A) since L-Rc in a typical
multipole configuration, a finite temperature ani-
sotropy' is unlikely to have an influence on the

appearance of an ion flute mode. In fact, the rel-
evant effect is represented by a term of order
(kaf)' which, as we have seen, is negligible in

comparison with terms of order 5D /~' in the
dispersion relation. (B) In those conditions
where the modes we have discussed become al-
most purely growing, they may achieve a consid-
erable amplitude and give rise to sizable anoma-
lous particle losses as observed in quadrupole
regions or octopoles where fluctuations are not
detected. (C) A case of application of the theory
given above may be presented by the Model-C
stellarator configuration that has a shallow mag-
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netic well and small shear in the inner part of the
plasma column. Fluctuations have in fact been
observed through ion cyclotron heating experi-
ments'~ and it has been stated that these could
well be flutelike with phase velocity in the ion di-
rection. (D) A properly modified version of the
modes discussed above may be utilized to explain
the recent observation of a mode with co & 2t,z,
phase velocity in the direction of the ion diamag-
netic velocity but "ballooning" in a region of un-
favorable curvature of the Livermore Levitron
toroidal experiment" with Tz & Te.

This paper has been stimulated by a recent
work' of Jukes, where the importance of ordering
Cuaf'j&u'-QDf/w is pointed out in connection with
the stability of the "electron" (u&y;«u&urye) flute
mode and the fluctuations reported in Ref. 11.'
The author is also indebted to M. Rosenbluth and
P. Rutherford for valuable discussions and sug-
gestions, and to K. Allen and S. Yoshikawa for
private communications on their experiments.

*Work performed under the auspices of the U. S.
Atomic Energy Commission, Contract No. AT(30-1)—
1238.
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Measurements of supercritical heat flow in He II are consistent with a mutal friction
constant which diverges near Ty. They also explain the apparent depression of Tp„ob-
served by Erben and Pobell, and the "critical heat flux" near 1'y reported by Bhagat and
Winer.

Recently, Erben and Pobell' (EP) reported a
depression by a heat current of the superfluid
transition temperature T& in He', and Bhagat
and Winer' (BW) measured a "critical heat flux"
in He II by observing the formation of bubbles at
a heated wire. In the present communication,
measurements of the heat flux q in a long cylin-
der of HeII, one end of which is at T& and the
other end at T &T~, are reported. All three ex-
periments, as well as the results of Keller and

Hammel (KH) near T&,
' can be interpreted4 in

terms of a Gorter-Mellink mutual friction con-
stant' which diverges near T&. Therefore, it is
not necessary to postulate a depression of T&
due to q as proposed by EP, ' and the BW results
need not be explained on the basis of a new criti-
cal velocity. '~'

The present measurements were made in a
stainless steel capillary, 2X10 ' cm i.d. and 4
x 10 ' cm o.d. , suspended in a vacuum surround-


