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AN EXTENSION OF THE VENEZIANO REPRESENTATION
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This paper extends Veneziano's representation from 7|7t m~ to IIII II&, where D (V)
is a pseudoscalar (vector) SU(3) octuplet or singlet.

This note extends Veneziano's representation
for the ~~-~co scattering amplitude to lIII-IIV,
where II is a pseudoscalar octuplet or singlet and
V is a vector octuplet or singlet. ' ~ The SU(3)
structure proposed here for llII-OV can be justi-
fied by arguments largely independent of the de-
tails of IIII - II V scattering (or of the Veneziano
representation for that matter). It is likely,
therefore, that this same structure applies to all
meson-meson scattering processes.

Because we choose to work with external parti-
cles having the same spin and parity as Venezi-
ano's, our amplitude will have the same Lorentz
dependence as his; only the SU(3) dependence

will differ:

T=E e P P P A(S, f Q).
pvp&

A is a scalar in Lorentz space and a tensor with
four subscripts in SU(3) space. We set

A=(&i~)[A, -~ )&

-(m -m )a -(m M)a ), -
su su su tu tu tu '

where the SU(3) subscripts (suppressed, for clar-
ity) are now on the Mf~ and Qz~, p= const, and
the B~& are the Euler beta functions chosen by
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Veneziano:

r(I -a(s))r(1-a(t))
st I'(2-a(s) —a(t))

We choose the Mt~ to have the same SU(3) struc-
ture as the quark-loop Feynman diagrams shown

in Fig. 1. (The Mt& are identical to the Mt& ex-
cept that the internal quark loops are counter-
clockwise. ~) This choice is motivated by the
quark model, since each external meson disso-
ciates into a QQ (quark-antiquark) pair [SU(3)
quarks, (3 3*)]. The "sides" of quark boxes Mt&,

Mij face toward channels i and j. This insures
that there are no 10, 10*, and 27 resonances (or
Regge poles) in the theory: For example, the
two beta functions with s-channel poles, Bzf and

Bzz, are multiplied by tensors Mgfp Miffy Mg~p

Mgg, , all of which contain an intermediate 3 3*
state if cut in two by a horizontal line; hence

none of these contribute to SU(3) channels 10,
10*, and 27.

Mij and Mij may be calculated by straightfor-
ward Feynman theory applied to an underlying M
—QQ vertex (M=meson), or one may use SU(3)
tensors, e.g.,'

b a c d
sf 1a 3c d 2b (4)

M~f is identical to M~f except for I1~-II,. The
various plus and minus signs in Eq. (2) are de-
termined by the Bose symmetry requirement of
total antisymmetry of A under interchange of any
two pseudoscalar mesons. '

It is straightforward to check that the asymptot-
ic energy, signature, duality, and superconver-
gence behavior of the original Veneziano repre-
sentation have been preserved. For instance, to
verify signature, one can manipulate Eq. (2) to
the form'

I'(a(s))I'(a(t)) ~ sinsa(s) us us us sinwa(s) ut ut

In Eq. (5) the SU(3) tensorsP(pt) project out pure
SU(3) state ut(= octuplet or singlet) in channel i;
and in going from Eq. (2) to Eq. (5) we have ex-
panded the tensors Mij, Mij in series which de-
fine the scalar coefficients Cij and C&j~ as fol-
lows:

M
t =pc t(ut)P(ut),

Wf

M t=&Ct (u )P(q ), etc
S

o12 = vi2(us) is the parity of P(gs) under the in-
terchange II, —II» i.e., 0» =+1 for p.z =1 or 8 g,
v|2=-I for ps =By. Similarly for o13 =vl3(ut).
The v,j enter in because we have used the rela-

i tions

0 C =C 0' 3C f
—C (7)

"ImB v', f v'dv',(R)

which follow because the tensors M~„, Mf~ differ
by Il, —ll„etc. Equation (5) is the generaliza-
tion to llll - II V of Veneziano's Eq. (10}. In the
mw-m~ case oij=-1 only, since rm-n~ admits
only the p trajectory. The present case admits
the even-signature A, trajectory as well.

The verification of superconvergence is like-
wise straightforward. In fact, one can show that

gImB (v', t) v'dv'

/ '

C«) Col)

FIG. 1 SU{3) structure of Mst, Msu, and Mtu. Al.

internal lines are SU{3) quarks. External lines 1234
=arrrrv.

where Bst( } (R for Regge) is that part of the
P(vt) term in Eq. (5) which comes from Bst
Equation (8) means that the Bst term is finite-
energy summable by itself: I.e., the summabil-
ity does not come from a conspiracy between Bzf
and B~„orBf„. This is crucial, of course, be-
cause now the Bzf, Bzz, and Bfz terms have
markedly different SU(3} structure and conspira-
cies are therefore impossible.

Similarly, the B» and Bf„terms must each be
superconvergent or finite-energy summable by
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themselves. Bg& contributes neither to ImA nor
to ImA(R), while Bsu is superconvergent in the
sense that

ImB (v', t)v'dv' =(const)v
o (t).

i.e., the Bs~ sum rule diverges one power more
slowly than one would expect from the asymptotic
behavior Bs„-v~(t) l.'c Note that Bs„must be
superconvergent near t = 0 and not merely finite-
energy summable there because the factor Ms~
-Ms+ multiplying Bs& contributes to t channels
which contain no Regge poles.

We emphasize again that most of the above con-
clusions are independent of the details of the
Veneziano representation or the reaction IIII
-IIV. If part of the s-channel resonant amplitude
is merely finite-energy summable at t =0 rather
than superconvergent, then it must cross to only
1 plus 8 in the t channel, besides being only 1

plus 8 in the s channel, and the st box structure
of Fig. 1 is inevitable for this part of the ampli-
tude. Crossing symmetry (in the present case)
or the dynamical similarity of s, t, and u chan-
nels (in other cases) then demand (superconver-
gent, not just finite-energy summable) su and tu

terms in addition to the st one." The simplest
assumption to make about the remaining nonbox
part of the amplitude at least for the present is
that it is identically zero. An SU(3) amplitude of
the form (2) is then the simplest possibility. "

In the exact SU(3) limit the present formalism
demands nonet symmetry in a dynamically well-
motivated way, since deletion of either 1 or 8 in
any channel would destroy the simple crossing
properties of the model.

For production amplitudes with 5, 6, ~ ~ ~ exter-
nal particles, presumably the quark square would
generalize to a quark pentagon, hexagon, ~ ~ ~ .

The author is grateful to Dr. Jerrold Franklin
for several discussions and to Dr. Gabriel Vene-
ziano for introducing him to several of the refer-
ences mentioned in the footnotes.

~G. Veneziano, Nuovo Cimento 57A, 190 (1968).
2Joel Shapiro and Joel Yellin, to be published. These

authors consider mm —ver scattering and the methods of
the present paper could be used to extend their results
to HII HII.

C. Lovelace, to be published.
4The reader who wishes to see that clockwise and

counterclockwise loops are not identical should consid-
er a process such as K ~+ K p+: The clockwise
loop Msg contributes to this process but the counter-
clockwise loop Ms~ cannot.

The indices a, b, etc. in Eq. (4) refer to the corre-
sponding quark lines a, b, etc. in Fig. 1. Thus if a
=p, b =A. , then II& is an incoming K+ or outgoing K
etc. For external singlets, replace the appropriate II
or V by a Kronecker delta.

6As it stands, Eq. (2) is correct only if all three pi-
ons (pseudoscalar mesons) are identical, all singlets
or all octuplets. Otherwise, Eq. (2) should be written
as a sum of six terms multiplied by six arbitrary con-
stants; after Bose symmetry is imposed, three of
these constants (P' included) remain undetermined if
the only externa1. singlet is a pion; and two constants
remain undetermined if there are two external singlets.
[Amplitudes involving three external singlets vanish be-
cause of SU(3) selection rules. The amplitude for four
external singlets vanishes because the quark loops can-
cel one another; with two or more external singlets,
clockwise and counterclockwise loops are no longer
distinct. ] Thus in some respects amplitudes involving
singlets are actually more complex than that for the
"complicated" case of four octuplets. In all cases,
however, these amplitudes have the correct high-ener-
gy behavior, satisfy the proper superconvergence re-
lations, etc. , just as they should.

The reader may verify, after a half-dozen lines of
algebra, that the "one" terms in the first and second
square brackets of Eq. (5) are just the ps+ and p~@
terms, respectively, of Eq. (2), while the a&2 and 0/3
terms in these brackets add up to give the ps& term.
Thus the imaginary part of the Regge term comes from
the same function which produces the poles (duality of
the imaginary part; the real part is not dual, nor does
it need to be). The 7lm 7).cu amplitude can be manipu-
lated further into a product of s-, t-, and g-channel
signature factors, but this extreme duality is not pos-
sible in the general case because the three g~& terms
are multiplied by SU(3) tensors which are too different
in structure simply to "factor out."

The P(pz) are constructed explicitly in D. E. Neville,
Phys. Rev. 132, 844 (1963).

In checking Eqs. {8) and (9), one must evaluate a
certain sum over even-J resonances. One needs the
identity

g I'(a+2n+1)(4n+n+ 2)/I'(2s+2)
n=0

=I'{o.+2m+ 3)/I (2p+ 2)(a. + 1).

Eq. (16) of Ref. 1 gives the sum over odd- J resonances.
Strictly speaking, we should investigate the zero-

moment sum rules too because the t channel now con-
tains both even- and odd-signature amplitudes. The
zero-moment sum rule for BsI. can be evaluated using
Eq. (0.151.1) of I. S. Gradshteyn and I. M. Ryzhik,
Table of Integrals, Series, and Products (Academic
Press, Inc. , New York, 1965), and is well obeyed;
however, the superconvergence relation for gsz does
not converge as it should for n (t) &1. This relation
might be better obeyed if "lower order" beta functions
were added to the simple form (2) (i.e. , beta functions
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of the form I'[m ~ (s))I' [n-n (t )j/I'[m+ n-n (s)~ ( t )),
m and/or s & 1) because (a) the lower order terms are
more important at low energies which the zero-mo-
ment sum rule emphasizes, and (b) Bsz is more sensi-
tive to these corrections than is &st. In fact, for s

with e (s ) + n ( t) fixed, the so-called "lower order"
corrections to gsz diverge faster than the leading beta
function. It is necessary to sum an infinite number of
them to get proper Regge asymptotic behavior. See
Stanley Mandelstam, Phys. Rev. Letters 21, 1724
{1968).

~The tu box is just the real Regge term in nonreso-
nant channels, discussed by H. Harari, Phys. Rev. Let-

ters 20, 1395 (1968).
Presumably nonbox amplitudes would be required

when unitarity corrections would be incorporated into
the model, since the vacuum "trajectory" contribution
does not have the quark loop structure. Nonbox ampli-
tudes might also be required when the nonet symmetry
is broken to SU(2). Even in the SU(2) limit the finite-
energy summable part of the amplitude must have the
quark loop structure (with broken-symmetry quarks);
however, there could be appreciable nonloop correc-
tions (necessarily superconvergent) which shift reso-
nance positions and residues from their nonet symme-
try values.
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We show that the Hamiltonian suggested by Gell-Mann, Oakes, and Renner can be ob-
tained as a spontaneous breakdown of chiral SU(3) SU(3) symmetry.

It has been recently suggested ' that the phys-
ics of strongly interacting particles can be better
understood as a breaking of chiral SU(3) I3SU(3)
rather than SU(3) symmetry. A specific model of
this breaking has been analyzed by Gell-Mann,
Oakes, and Renner. ' The basic assumption is to
write the strong-interaction Hamiltonian in the
following form:

H = Ho+ e(so-v 2 Qs),

where H, is invariant under SU(3) SSU(3), and
the scalar u; (i = 0, ~ ~, 8), together with the cor-
responding pseudoscalar partners vt. (i =0, ~ ~ ~, 8),
belong to the representation (~3 3*) (3 ~, 3) of
SU(3) SSU(3).

In this note we want to point out that Eq. (1}
may be understood as a dynamical breaking.
More specifically, we will show that SU(3) 8SU(3)
symmetry breaks spontaneously along the direc-
tion u, -v 2 u„and that an effective Lagrangian
function can be deduced containing a breaking
term which belongs to the representation (~3 3*)
S(3*,3) of SU(3) SSU(3).

Let us denote by 2 a function which describes

the system of strongly interacting particles. It
may be the S matrix, or the Lagrangian, or the
Hamiltonian. Just for definiteness we shall call
it the Lagrangian. Let us assume that J is fully
invariant under SU(3) SSU(3). The occurrence of
a spontaneous breaking is equivalent to the exis-
tence of stationary points of 2 other than the ori-
gin. 4 In order to show that, we have to express
2 as a function of the "fields. " To this purpose,
we introduce the "elementary" fields u;, v; (i=0,

, 8) which transform according to the repre-
sentation (3 3*}$(3*,3) of SU(3) C3 SU(3) symme-
try. They may be regarded as mathematical ob-
jects in terms of which one may construct the
representations of SU(3) I3 SU(3) without neces-
sarily implying a physical interpretation for
them.

It is convenient to introduce the notation

(2)

where
8

U =~ Q (x.u, )
i=o


