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Every scalar-pressure, perfectly conducting, two-dimensional equilibrium with three
magnetic field components and an arbitrary pressure profile but no current in the ignor-
able direction is magnetohydrodynamically stable. The stability of these equilibria
bears no visible relation to any magnetic well or average magnetic well criterion and is
only partly ascribable to shear.

Consider a perfectly conducting, scalar-pressure magnetohydrodynamic equilibrium, subject to Vp
= JxB. The second variation of total energy, f(zB'+ 2p}dV, can be written in several equivalent forms:

25W =f(Q'+ ] Qx J+(5/3)p(div()'+ ($ ~ Vp)(div))]dV+ $[ep /Sn]] 'dS, (l)

25W, = f((B V(-Bdiv()'+ Vp„(]div]-& V])+ (5/3)p(div/)')d V,

25W = f((B V$-Bdiv))'+p (S(./Sx. )(S(./Sx. )+[(5/3)p-p, ](divE)')dV $+p [g divg )V)]-dS,

(2)

(3)

where

(4)Q = curl(( x B),

(5)P, =P+-,B'.

The surface integrals are kept in order to allow
discontinuities in 8 and P at selected flux sur-
faces; equilibrium requires that P be continuous
across these surfaces,

[p,]=o. (6)

The same notation is used in (l), where [sp /sn]
signifies the jump in sp /sn across an interface,
and similarly in (3).

The first form, 5W„explicitly exhibits the
stability of a vacuum field for which 5W, = ,'f Q'dV—
[this elementary fact is quite hidden in (2) and
(3}]. The neutral variations in a vacuum field
are interchanges, Q = curl($ x B) = 0.

The second form, 5%'„can be obtained from
(l) by innumerable integrations by parts, or
more directly, via a Lagrangian (rather than
Eulerian) evaluation of the energy variation. '
This form is notable in that there is no explicit
contribution at an interface. It also explicitly ex-
hibits the stability of the elementary configura-
tion in which B is unidirectional [Bz and p depend
on (It, y) and P = const]. This elementary result

is not apparent from 5W, . The neutral perturba-
tions in this case are flutes, div$ =0 and B.V$
= 0. We can contrast flutes which are incom-
pressible in physical space with interchanges
which are incompressible in flux coordinates.

The third form, 5W3, can be obtained from
(2) by a single integration by parts. We shall
find this form particularly useful because no de-
rivatives of the equilibrium quantities B and p ap-
pear explicitly.

In two-dimensional equilibrium with z as an ig-
norable coordinate, the field can be written

B=B +B =nxVg+nB,
0 z z' (7)

J = nag-n x VB (s)z'
where n is the unit vector in the z direction. The
most general equilibrium with this symmetry re-
quires p and Bz to be constant on g lines, and f
is governed by the nonlinear elliptic equation

&t) = -p'(q)-f'(g),

where p(g) and

f(y) =-.'a ' (lo)' z
are considered to be arbitrarily given functions. '
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We shall be concerned with a special class of
equilibria such that

p(g)+ f(g) =p+ 28—'=const,' z

6/=0. (12)

Such special equilibria can be constructed by
choosing an arbitrary two-dimensional vacuum
field Bo = n x vg, then supplying an arbitrary (pos-
itive) pressure profile p(g) and with it a corre-
sponding Bz (g) compatible with (11). Alternative-
ly, special solutions are characterized by J'z 0;
only plane currents flow in the plasma.

Our main result is that all such special equilib-
ria are absolutely stable, 5Q'& 0. Stability is
meant with respect to general three-dimensional
perturbations g. There is no restriction at all on
the plane vacuum field or on the pressure profile
P(g). Examples of relevant fields are the simple
hard core, any multipole with simple or split ax-
is, Fig. 1, the two-dimensional model of a heli-
cal field, ' Fig. 2, and many more.

We present two proofs of this stability theorem.
The first is by inspection of 5% y and 5W„but it
loses track of the neutral displacements, 5$'= 0.
Consider first a step-function pressure profile;
i.e. , select a sequence of flux contours g = g; in
the vacuum field and assign a constant value of P

to each shell gf&g&g&+1. There is, of course,
a surface current in each g;. Consider 5W, . We
have sp /sn =s(-,'B,')/sn which is continuous
across an interface. Therefore the surface
terms in 5$', vanish. In each layer we have J=0
and P =0; thus

5W, = ,' f—{Q'+(5/3)P(div])')d V ~ 0.

This proof of the stability of step-function spec-
ial equilibria has been given previously. '

Next consider a specific field g(x, y) and a
smooth profile P(g) together with a fixed smooth
perturbation $(x,y, z). We can uniformly approx-
imate the function of a single variable P(g) by a
sequence of step functions P"(tt). The corre-
sponding step functions Bz"(g) also converge uni-
formly to Bz(g). Since g is a smooth function of
x andy, P" and Bz" converge to their respective
limits as functions of x and y. For each P" we
have 5W" ~ 0. By inspection of formula (3) we
conclude that 5W converges to 5W (B, and $ are
fixed, and the integral contains no derivatives of
P or B ). Consequently 5W ~ 0 for a smooth P(f)
for every $. We repeat that, although the equi-
ibrium is two-dimensional, we have proved its
stability with respect to general three-dimension-
al perturbations (.

Our second proof uses the following form of 55'
which is valid only for the special class of equi-
libria, , (11):

25W, = f{(Bvg-Bdiv(-] vB,)'+ (5/3)p(div])')d V. (14)

Stability follows by inspection of 5W, . This form for 5W is derived from (1) or (2) by an intricate ser-
ies of manipulations involving chiefly the identity

div[(Box ))x(( ~ VBO)] =(vzBO )(( div)-$ V$)+(Bo v)-Bodiv)) -(Bo v)-)VBO-Badiv)) . (15)

It is suggestive to consider the positive first term
of (14) as an interpolation between an interchange

Q=B.V'$-Bdiv)-$ VB, (15)

and the flute term, B v)-Bdiv) of (2), just as

!
the equilibrium is, in a sense, an interpolation
between a vacuum field Bo and a unidirectional
equilibrium (P, Bz).

A small amount of manipulation (cf. Appendix)
shows that the only neutral perturbation, 5%', = 0,

FIG. 1. Multipole fields. FIG. 2. Model of a helical field.
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is the trivial one,

]=a(y)B, +P(|jI)n,

displacements g which satisfy

div $ =0, (A. 1)

which leaves the equilibrium unchanged. There-
fore 5W' is strictly positive for any nonzero per-
turbation of P and B.

Of particular interest is a multipole geometry,
cf. Fig. 1. Any such configuration is stable pro-
vided that Jz —-0. We repeat that the vacuum

field, Bo, is arbitrary; the pressure profile P(P)
is arbitrary, in particular it is not necessarily
monotone; Bz can go through zero and reverse;
there is no critical P, and there is no critical
flux surface (as in simple multipoles with Zz but

no Bz). The fact that 5W is strictly positive,
with no neutral perturbations, indicates that per-
turbations of these equilibria to include small
J, slight helical or toroidal curvature, etc. ,
are likely to yield substantial regions of stability.

The stability of this class of equilibria cannot
be even qualitatively related to any curvature, or
magnetic well, or mean magnetic well concept.
All of these are based on the idea that the plasma
would rather be in one location than in another;
but we are free to change the sign of p'(g) with-
out losing stability. With finite P, P(tf) can alter
the well configuration, but such a self-induced
well is excluded in the usual formulations of this
principle.

Shear is present in varying amounts in most of
these equilibria. But no shear devotee would ex-
pect this mechanism to be effective at arbitrary
P. Also, the shear can always be reduced to ze-
ro in finite volume by proper choice of P(g).
This geometry is too restricted to permit arbi-
trary variation of shear, P(g), and some selected
well criterion all independently. It is unlikely
that any weighted combination of shear and some
specified well depth extracted from this geome-
try would be relevant to any but a neighboring
geometry (just as these concepts, originating in
other special calculations, fail in the present ap-
plication). It has always been clear that quantita-
tive magnetohydrodynamic stability is a matter
of detailed calculation in any given configuration;
but even the qualitative picture seems to depend
on as yet undescribed features of the equilibrium.
Any new qualitative insights given by this large
class of stable configurations will only become
visible when extensions to more general, neigh-
boring geometries indicate a transition from sta-
bility to instability.

Appendix: Neutral displacements. —To find all

B V(-$ VB =Q+$ VB =0,
0 z

we set

t' = aBO+pn+yVg, $, = aBo+yVg.

(A.2)

(A.a)

(except when there is a finite volume of closed
magnetic lines). From divQ= 0 we conclude (un-
less B is identically constant)

y=y(x x).

Noting that SQ/Sz = 0, we set (S)/Sz) x B = Vy and

obtain

(A. 5)

B (Sa/Sz )Vg = Vy.
z

(A. 6)

Therefore cp = rp(g) and a = ao(g)z + a, (x,y). From
periodicity in z, we conclude

a =a(x, y). (A. 7)

The plane component of (A.2) gives curl($ x Bo)
= 0 or y Bo 'n = V4, from which

yB,=2cd = const,

$0 x Bo ——crn.

The condition divf, = 0 or

Bo Va+ &&VS. V(1/Bo') = 0

(A.B)

(A.9)

(A. 10)

is compatible with a being single-va, lued on a g
contour only if &r = 0 (assuming that $ ds/Bo is not
identically constant), from which B,~ Va =0, and
finally

y=0,

a =a(g).

(A. 11)

(A. 12)

This confirms Eq. (17) in the text.
The special cases excluded above (Bz constant,

all B lines closed, fds/B, constant) give certain
unimportant exceptions.

*Work supported by the U. S. Atomic Energy Com-
mission under Contract No. AT(30-1)1480.

$0n leave from the Institut fur Plasmaphysik, Gar-
ching bei Munchen, Germany.

We consider a "toroidal" domain, periodic in z,
and with either closed or periodic g lines.

From the z component of (A.2) we find B Vp
=0 or

(A.4}
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This formula is derived in a guiding-center (aniso-
tropic) version in H. Grad, Phys. Fluids 9, 225 (1966).

H. Grad and H. Rubin, in Proceedings of the Second
United Nations International Conference on the Peace-
Uses of Atomic Energy, Geneva, Switzerland, 1958
(United Nations, Geneva, Switzerland, 1958), vol. 31,

p. 190.
3A. Blank, H. Grad, and H. Weitzner, in Proceed-

ings of the Third International Conference on Plasma
Physics and Controlled Nuclear Fusion Research,
Novosibirsk, U. S. S. R., August, 1968 (to be pub-
lished).
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It is shown that at frequencies approximately equal to one-half the electron cyclotron
frequency, the threshold power for the self-focusing of the whistler mode becomes suf-
ficiently small to be available for laboratory experiments.

In this paper we shall show that at frequencies
about one-half the electron cyclotron frequency,
it is possible for whistler wave to be self-focused
by exceedingly small threshold power. ' Since we
shall be concerned with an order estimation, it
may be assumed that electrons and ions are iso-
thermal and governed by hydrodynamic equations.
In addition, the frequency of the wave will be tak-
en as much higher than the ion-cyclotron frequen-
cy so that the ion motion will be neglected. Then
we may take as our starting equations the hydro-
dynamic equations for electrons coupled with the
Mme ell equations. The equations for ions will
be supplemented, upon occasion, to determine a
slowly varying mode of density.

We first consider a wave of slab shape propa-
gating in the x direction oriented along an applied
magnetic field and stretching in the y direction.
In this case the starting equations take the form

an au av a(nu) a(nv)
+np = -np

Bt pex pay Bx ay
'

Bu e KT Bn Bu
e—+—E u

at m x m(n +n) ax ax

eu (d
C-v—- - - Im(v*ta),

By B,

BB BE
x z+c =0,

Bt By

BB
x z

-4menpu = c + menu.
Bt '

By

BB BB
X

x By

(4)

B'U e ~T Bn O'U B'0
e= -i + —8 = — —-u—-v-

at c m m(n +n) ay ax ay

C+i (B g-u(a), —
Bo x

BS BE
+iC =iC

Bt Bx By
'

BS Be BB
— -ic — -4m enp'U = -ic + 4men/,Bt Bx p

By

BE BE
X + = 4me(n. -n),

BX By l,

=v+iw, 8 =E +iE, I=B +iB
z y z

Here u, v, and w are the x, y, and z components
of the velocity of electrons, respectively', n is
the varying part of the total density of electrons
np+n. Ex Ey Ez By and Bz denote the re-
spective components of the electric and magnetic
field while the x component of the magnetic field
is the sum of the applied strength Bo and the
varying part Bx, and cuc is the electron cyclotron


