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An unambiguous formulation is presented for the derivation of the two-pion as well
as one-boson exchange contributions to the nucleon-nucleon potential. It contains no in-
ternal momentum expansions, and depends only on experimentally determined coupling
and mass parameters. The calculated result, containing terms linear in the momentum
operator, is remarkably close to the Hamada-Johnston potential for distances x~ 0.7 F.

For many applications, it is useful to have a
potential which, when used in the Schrodinger
equation, generates the field-theoretical S matrix
to some required accuracy. In the case of the
two-nucleon system, the potential respresenta-
tion is important in many-body considerations.
Fortunately, there are strong indications that a
potential representation based on the boson-ex-
change hypothesis is valid. 'y' The present work
is motivated by the belief that a suitably accurate
representation of the effect of the one- and two-
pion exchanges amended by the known multipion
resonances and rescattering corrections may ac-
count for the nuclear interaction for relative dis-
tances r 20 51'/pc . (g the pion mass), up to the
pion threshold energy.

The early attempts to derive the two-pion ex-
change potential (TPEP) led to a variety of schemes
which differed importantly in their consequenc-
es."' The best known of these are the Taketani-
Machida-Ohnuma (TMO)' and Brueckner-Watson
(BW)' potentials. An unsatisfactory aspect of
these works is the so-called static approximation
which has been eliminated in the more recent
formulation of Charap and Fubini, and Charap
and Tausner (CFT).' This formulation, however,
suffers from a divergence, which, when made

finite by subtraction, leads to unacceptable re-
sults. ' Our procedure is based on the observa-
tion that the iteration of the one-pion exchange
kernel (OPEK) involved in the derivation of TPEP
is very sensitive to the choice of OPEK off as
well as on the energy shell. Indeed, the diver-
gence in CFT can be traced to the iteration of
their "adiabatic" approximation of OPEK. The
TMO-BW difference can also be attributed to the
different off-shell choices of OPEK as well as to
the static approximation. ' A satisfactory treat-
ment must give a mell-defined derivation of OPEK
accurate over the entire range of iteration and
not only the low-energy region.

In the following we shall describe a method
based on the Blankenbecler-Sugar' reduction of
the Bethe-Salpeter equation and a unitarity-pre-
serving definition of the corresponding Lippmann-
Schwinger (LS) amplitude. We will further show
that the resulting potential is identical on the en-
ergy shell with one obtained from a modified C FT
method that employs an unapproximated OPEK
defined according to the same unitarity require-
ment.

The Bethe-Salpeter equation for the (elastic)
scattering of two nucleons in the center-of-mo-
mentum system from a state of relative four-mo-
mentum p to one of p

' is

(P', P I w) = &(P', P lw)+ fd'R &(P ', R Iw)G(R Iw)5g(R, P Iw),

where 5g is the invariant amplitude, W half the total momentum, K the interaction kernel consisting of
all irreducible diagrams, and G the two-particle (free) propagator,

P'}
~ (2)

G(R Iw) =—
2~ iN'+8-m W-8-m (2)

where m is the nucleon mass. The superscripts (l) and (2) refer to the two nucleons, and the spin and
isospin indices have been suppressed. " The equivalent "equal-times" equation of Blankenbecler and
Sugar is obtained by replacing G by a, propagator g that produces a two-particle cut only in the physi-
cal region where its discontinuity is equal to that of G. The propagator g is readily constructed, and
the resulting equation is

(p, plw)=U(p, plw). ~RU(P. RIw) ( )[y ()-y -] [y (k).y .-] K( Iw}
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where E(k) = [k +m ]
' and U is the equivalent interaction given by the integral equation

U= K+ K(G-g) U. (4)

We note the appearance of the 6 function and of the positive energy projection operators in Eq. (3).
The former serves to reduce (3) to a three-dimensional equation, while the latter restrict 3R to the

positive energy spinors. Passing to the Pauli (two-component) spinor representation, and integrating
over R, we get

p)((p', p(w)=v(p pl'w, )+f&p&(p', k(w)~), ~(,)~, „,p(„)p(((, plw) (5)

where tilde signifies the restricted quantities. The appearance of the factor m/E(k) may seem unde-

sirable. ' However, SR (being essentially the invariant amplitude) is not the LS amplitude (T) and must

not be thus identified. The correct identification is easily ascertained by requiring that the relativis-
tic unitarity relation on reduce to the nonrelativistic one on T. This requirement immediately leads
to

1/2 — m - 1/2

T(p', p!W)=, 3g(p', p!W)

The above factors connecting and 7' evidently account for the difference between relativistic and

nonrelativistic phase-space factors. They therefore ensure the equality of the physical observables
(e.g. , cross section} in the two formulations. Equations (5) and (6) now yield the final result in our
reduction:

v(p', p(w) = v(p', p(w)+ fd'p v(p, p(w),~, ~
v(R, p(w),

where the potential V is related to the interaction
kernel by

y(p, p I
w)

(8)

Note that the factors of ~/E make a correction to
the standard OPEP (as well as other potentials)
equivalent to a potential of a range of the order
of the nucleon Compton wavelength. From Eq.
(4), we can write down the various orders of the
interaction U, of which we will record QPEK and
TPEK (two-pion exchange kernel):

U~'= K~'

U(" = K(4)+ K~)(G-g)K".

We now assert that if the CFT method is modified
so as to conform to the identification of Eq. (8)
(implying the use of the exact OPEK for itera-
tion}, it will give rise to a potential identical on
the energy shell to that defined by (8) and (9)."
This circumstance must be regarded as a consis-
tency check, since in both derivations the re-
quirement is that the potential, when used in the
Schrodinger equation, produces the physical
equivalent of the field-theoretical amplitude in

! each order of the perturbation expansion.
The procedure discussed above yields an ener-

gy-dependent potential in momentum space, giv-
ing rise to a nonlocal as well as energy-depen-
dent (W) potential in configuration space. The
general characteristics of the energy dependences
involved have been studied by Hoshizaki and
Machida" in momentum space and by C FT using
dispersion theoretical arguments. The usual
practice of converting energy dependences into
differential operators in configuration space is an
asymptotic procedure valid for distances large
compared with the nucleon Compton wavelength.
Such asymptotic expansions are satisfactory at
distances of the order of the pion Compton wave-
length; at half that distance they are not quite so
satisfactory, and indeed the potential becomes
extremely energy-dependent at or inside this dis-
tance. The same conclusion follows from the ob-
servation that the expansion will fail when the
strength of the potential is comparable with the
reduced mass of the system —,'~. This fact to-
gether with the importance of many-meson ex-
changes sets a natural boundary for the potential
representation at about half the pion Compton
wavelength. ' We therefore adopt the view that
the potential representation is a fairly accurate
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FIG. 1. Complete S-state potentials. The solid
curves are those of the present calculation. The dashed
curves are those of Ref. 15. With respect to pion mass
differences, the isospin T =1 potentials represent the
P-P case.

representation up to the boundary region, inside
which it must be amended by some suitable rep-
resentation of its extreme nonlocality such as
the boundary-condition model. '&"

On the basis of the above considerations, we
expand our potential in powers of the momentum
operator (in configuration space) and retain
terms up to the first order, thereby including
the central, spin-orbit, tensor, and spin-spin
potentials. It is worth emphasizing here that
nowhere have we used the static approximation
involving the socalled p/m expansion and the
nonrelativistic limit on internal momenta. This
procedure is in accord with the CFT treatment,
and it goes further by avoiding their adiabatic
approximation on OPEN

The potentials, given by multiple integrals,
have been calculated numerically. The complete
potential includes OPEP and TPEP (with PS cou-
pling), and q, p, and &o exchanges. The masses
used in the potential have been taken from the
Hosenfeld tables, and the coupling parameters
have been taken from experiments. '~'~ They are
g„'=14.4, go =1, go~ =0.53, gp/fp =1.83, g~'

FIG. 2. Complete tensor and spin-orbit potentials.
The solid and dashed lines have the same meaning as in
Fig. 1.

=12g&, g&/f& =-0.06, where all coupling param-
eters are rationalized md dimensionless. Our
definition of the coupling parameters for the vec-
tor mesons are specified by the following inter-
action Hamiltonian for p:

e =[4v]%
p

&&Ig r & +(f /2m)o (& & -& &)j ~.
p p p P P, P v

The mass of the charged pions is used as the unit
of mass. %e have incorporated the pion mass
differences in our potentials.

Figures 1 and 2 compare our complete poten-
tial with that of Hamada and Johnston. " Figure
1 compares the well-determined 'S, and 'S, po-
tentials, and Fig. 2 compares the tensor and
spin-orbit potentials in the two isospin states.
The agreement is very good with the exception of
the isosinglet spin-orbit potential (which is not
determined very well phenomenologically). The
above comparison is not intended to establish the
validity of our potential on the basis of agree-
ment with a phenomenological one. Indeed, the
Hamada-Johnston potential includes quadratic
spin-orbit terms which have no counterpart here.
However, among the cases exhibited here, the
singlet and triplet S-wave potentials are deter-
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some of the two-pion continuum contribution on
account of the apparently broad width of the res-
onance. " We expect the resulting correction to
be small for r&0.5h/pc. The role of pair sup-
pression should also be investigated in this con-
nection. In a future publication, we shall pre-
sent a detailed description of the potential and
discuss some of the relevant aspects omitted
above.
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FIG. 3. Central and tensor T =0 TPEP potentials.
The solid curves are those of the present calculation,
the short-dashed are TMO (Ref. 5), and the long-
dashed are BW (Ref. 6).

mined experimentally with small ambiguity for
r &0.58'/pc, and therefore afford a meaningful
comparison. Figure 3 compares our TPEP to
the corresponding TMO and BW TPEP's without
pair suppression. As in the two cases illustrat-
ed here, the sign of the BW alteration to TMO is
always substantiated, as expected theoretically. "
We believe that the somewhat large deviation of
our TPEP from both TMO and BW in the central
potentials is due to the static approximation used
in the latter pair.

In conclusion, the procedure presented above
seems to be a well-defined and unambiguous
prescription for deriving potentials from field-
theoretical models. The principal contributions
to be added to the present potential are the re-
scattering corrections; we intend to incorporate
these by including the N* resonances via a cou-
pled-channel formalism. The 3n continuum is
difficult to compute, and it is probably mainly
confined to the inner region. The role of a pos-
sible S-wave two-pion resonance should also be
investigated. Although the large mass of this
resonance (-730 MeV) would presumably confine
its effects mainly to the inner region, a consist-
ent treatment must consider the subtraction of
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