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THERMODYNAMIC ANOMALIES OF CO» Xe, AND He' IN THE CRITICAL REGION
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A closed-form equation for the chemical potential as function of density and tempera-
ture, based on the scaling idea, is fitted to experimental data in the critical regions of

CO2, Xe, and He, optimizing 6, T~, and two adjustable constants. Values obtained for
the critical exponents and the two constants vary only slightly from substance to sub-
stance; we find P =0.35-0.36, 6 =4.4-4.6, implying y -1.25, u -0.05; I'/I" =3.6-4.4, D
=2.6-3.3. Agreement with previous estimates and with independent C~ and optical-den-
sity-gradient measurements is discussed.

The scaling-law equation of state for the critical region; recently proposed by Widom, ' Griffiths, '
and others, is a partial asymptotic formulation of thermodynamic behavior near a critical point, and

it incorporates the well-known critical anomalies with equal exponents above and below Tc.

coexistence curve, t &0: Ap =B( t);-
5-1

critical isotherm, t=0: P(p, T ) P(p, T-)—p. (p, T )-p(p, T ) =&(&p)(&pl
C C C C C C

compressibility, on the critical isochore, t )0: K =Ft

along the coexistence curve in the one-phase region, t &0: K = I"(-t)

+ ~ Q
specific heat at constant volume, on the critical isochore, t )0: C =!A /n)[t -1];

V

on the critical isoehore, t &0: C = (A /o)[(-t) -1];

along the coexistence curve in the one-phase region, t &0: C = (A /o)[(-t) -1];e I

jump in pC when crossing phase boundary, t «0: b, (pC ) =A (-t)
5 5

with

h(x)

x=t/(~p( and t=(T-T )/T .1
c c (2)

h(x) is analytic in its range of definition, -x, &x
(~, equals 0 at x= -x„ the coexistence curve,

For fluids, in Griffiths' formulation, using quan-
tities made dimensionless by appropriate combi-
nations of critical parameters, the chemical po-
tential 6 p, = tL(p, t)-p(pc, t) is an antisymmetric
function of b p = (p-p )/p at constant temperature
and can be expressed as follows:

p(5 + 1-2s)

0=1 "
near x= ~, so that p is analytic in t and hp across
the critical isochore for all t)0.' There are also
conditions on derivatives of h(x) in order to ful-
fill thermodynamic stability conditions. Equation
(2) implies validity of the Griffiths-Rushbrooke
thermodynamic inequalities between exponents as
equalities. The scaling law (2) implies that the
quantity h(x) = b, p, /(b, p(& is a function of one vari-
able x =t/(z (1p/tl only or, alternatively, that
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G(y)=b p/)t)P~ is a function of y=~&p~/tP only. It
is this last formulation that we used in our prev-
ious analysis' of the scaling properties of fluids;
by plotting G(y) vs y for several gases we showed
that isotherms in the critical region coincided
reasonably well on a single curve. The scatter
around the curve was due to several causes. One
should expect deviations of corresponding states
between the various substances. The choice of
parameters T~, p, and 5 was not optimized and
it was assumed but not proven that the exponents
are the same for all substances. It was not clear
whether all experimental points were in the as-
ymptotic range where the scaling law would hold.
Finally, the possibility of systematic experiment-
al error in some data cannot be excluded.

In this Letter we summarize the results of a
detailed study, to be published elsewhere, ' of
the experimental behavior of fluids in the critical
region, in which we paid attention to all these
factors. The substances CO„' Xe, and He~

were analyzed separately in order to detect pos-
sible deviations from corresponding states. By
choosing a closed form for representing h(x) one
could do the scaling as a least-squares problem,
optimizing several of the parameters. Also, we
investigated the range of validity of the asymptot-
ic Eq. (2). Using the maximum available range
of Ap and t in which 6 p, was antisymmetric in
hp, we noted that some points deviated system-
atically from the fitted equation and that the ex-
ponents varied somewhat when the range was
changed. The data were as
asymptotic range when for
the ranges of Ap and t the v
eters became steady and sy
were absent.

We propose the following equation for h(x):

x+ x„2P- [P(6-I}-&]/2P
XQ

(4)

where the factor (x+ x,)/x„suggested by Widom, '
ensures h(x) to be zero at x= -x,,'E, and E, are
adjustable constants.

The expression (4) can be shown to fulfill all
criteria formulated by Griffiths except for the
form of the series expansion (3) at large x. The
first three derivatives of 6 p, with respect to b,p,
however, are of the right form at x-~. Equa-
tion (4) predicts the correct behavior for the
compressibility along the coexistence curve;
higher derivatives are not well behaved at x= -x,.
Expression (4) is a form for h(x) with a small
number of adjustable parameters, namely x„
P, 6, E„and E„and implicitly Tc and pc. It is
suitable for a least-squares analysis of experi-
mental data. Writing

-x„f (x)- 2P/(~-I)
g x x xo

where h(x) and x now represent the experimental
quantities (L p. (/(ao ~6 and t/(ap (~/P, respective-
ly, we have

2P/(y-&) x+x. 2P-gx —E, '
2

XQ
(6)

sumed to be in the therefore g(x) is a linear function of ((x+ x,)/
further reduction of xo}2P.
alues of the param- We have fitted the properly weighted values of
stematic deviations g(x) as a linear function of ((x+x,)/x, ) P by a

least-squares fit, thus obtaining estimates for

Table I. Critical parameters for CO2, Xe, and He .

Parameter CO2 Xe He'

P
Xp

pc
Tc

pc
Tc

Fit of coexisting densities
0.350+ 0.008 0.350 + 0.008
0.135+ 0.010 0.186+ 0.020
236.7 amagat 1.08 g/cm3

30.94 + 0.04'C 16 590 + 0 004'C
Fit of 4p, 4p, t data using scaling law

236.7 amagat 1.110 g/cm
30.96+ 0.04'Ca 16.58 + 0.03'Ca
4.60 + 0.06a 4.6+ 0.1
2.36+ 0.02 2.96 + 0.07
0.30 + 0.02 0.37+ 0.03

0.359+ 0.002
0.360 + 0.005
0.0691 g/cm3

5.1889+ 0.002'K

0.0693 g/cm
5.1884+ 0.0008'K

4.45 + 0.10a
2.78 + 0.03
0.48+ 0.03

In most cases the error bars are standard deviations obtained by least-squares analysis. The ones marked,
however, have been ascertained by observing that systematic deviations from the fitted equation are present if the
parameter is varied by this amount or more.
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The values of the critical exponents and coeffi-
cients derived from the parameters of Table I
are shown in Table II.

It is evident from Fig. I that Eq. (4) describes
the experimental PVT data, for CO„Xe, and He'
within their estimated precision. For He the
specific-heat parameters found from (4) agree
well with values we derived from directly mea-
sured C data".

V

A
II

A A

From C

From Eq. (4)

0.06 + 0.01 1.35 + 0.42

0.05 1.42

0.4

1.06 0.36

We had no difficulty fitting the coexistence
curve, the PV T data, and the C~ data all with the

E, and E,. P, x„and p~ were not varied but
rather taken from an independent fit of coexis-
tence curves to be published separately. " We
have performed the least-squares analysis for a
number of values of T~ and 5 and chosen those
that give a minimum standard deviation. We
found that we could use all data in the range of
antisymmetry of Lp, which is about +30% in b,p,
except for some points of large Ap at the highest
temperatures, with t around 0.03. The results
of our analysis of the data on CO» Xe, and He'
are summarized in Table I. Figure 1 shows the
form of the function 1nh(x) vs in[(x+ x,)/xo] for
the three substances, and it is indicative of the
quality of the scaling.

It should be noted that the representation of the
scaling-law equation of state in terms of h(x) is
simpler, smoother, and thus more attractive
than our previous representation G(y). In partic-
ular, there is no break in the functional form of
h(x) a.t x=0.

The values of the constants in the definitions of
the critical anomalies Eq. (1) are simply related
to the constants in our Eq. (4) except for the co-
efficients of the specific heat which require nu-
merical integration:

)(y-I)/2P

-yE E (y-I)/2p
x0 1 2

,-2 -1 -yr' =p x, ys„

p-IE (I-y)/2p,
2

From C
V

From Eq. (4)
From P

S

2 2—(I= a+ bt+ ct +dt

0.065

0.04
0.04

0.06

4.4

4, 8

5.8

5.2

2 8

3.7 1.2

It should be realized that the experimental C~
values, not at our disposal, were fitted with n
slightly different from ours.

The ratio of the compressibility coefficients
I'/I" is different from our previous estimate'
which was obtained by graphical determination of
slopes of isotherms. This is difficult to do re-
liably near the coexistence curve. Our new val-
ues of I'/I" and y agree reasonably well with
those of Wilcox and Balzarini who used optical
interferometry very near the critical point. "
This is an indication that asymptotic behavior
may set in at fairly large distances from the
critical point and can thus be inferred from data
not very close to critical.

From Table II it appears that the only parame-
ter varying greatly from substance to substance
is x,. The other parameters p, 5, E„and E, are
remarkably steady. We do not yet have the sta-
tistical tools for deciding whether the small dif-

Table II. Critical exponents and coefficients for CO2,
Xe, and He .

Parameter CO2 Xe He4

7

r
r

I jr
A+

A
II

A

1.26
0.04
0.0526
0.0119
4.4
2.6
4.24
5.80

1.56

1.26
0.04
0.059
0.0143
4.1
3.3
3.70
4.80

1.10

1.24
0.05
0.130
0.0359
3.62
3.2
1.06
1.42

0.36

same values of the critical parameters. For Xe
the agreement between the calculated C param-
eters and those derived from experimental C~
data" is less striking. For this substance pre-
cise data for the vapor pressure curve P are
available as well. Fitting these with a scaling-
law-based expression we could make a third es-
timate of the specific-heat anomaly since in the
scaling-law picture the anomaly of C is the
same as that of (O'P/BT')&c. The three sets of
parameters show agreement in order of magni-
tude:

A A A
II
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FIG. 1. Agreement between calculated curves and experimental data. The solid lines represent Eq. (4) with op-
timized parameters from Table I. The error bars on the exoerimental points reflect realistic estimates of error".
in pressure, temperature, and density.

ferences found are significant. If not, the criti-
cal isotherms of the three gases should coincide.
Our previous study of the critical isotherm, ' im-
plicitly assuming this correspondence, yielded a
value of g somewhat higher than the ones found
here. This must be due to a slight displacement
of the optical data used before. " Since a very
small temperature gradient in the optical data
could cause this displacement, we do not neces-
sarily ascribe this offset along the critical iso-
therm a result of changing behavior very near
the critical point.

We have concluded that: (1) The experimental
PVT data in the critical region of He, CQ„and
Xe, after transforming to variables 6p, , hp, t,
can be scaled (Fig. 1). (2) The proposed form (4)
of a scaling-law equation describes the data of
the three gases to within their estimated preci-
sion (Fig. 1). (3) The range of validity of the scal-
ing law is approximately ~30 $ in np and -0.01,
+0.03 in &. (4) The behavior of C„derived from
this equation agrees fairly well with directly
measured C„data for Xe and excellently with
similar data for He4. (5) The values of the criti-
cal exponents vary only slightly from substance
to substance. There is hardly if any dependence
on the quantum parameter A~." (6) The coeffi-
cients E„E, in our equation do not vary appreci-
ably from substance to substance. (7) The devia-
tions from corresponding states in the critical
region are therefore almost completely described
by the parameter x„or B alone, which parameter

varies considerably from substance to substance.
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Bill Sutherland
Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790

(Received 23 January 1969)

We investigate the nonequilibrium properties of pf distinguishable, classical, point
particles on a ring of length I, in the limit &, L, ~ and +/I- d; the dynamics consists
of a velocity-dependent probability of penetration. In particular, we identify the eigen-
vectors of the Liouville equation and find the corresponding eigenvalues, the real por-
tions of which are the negative inverse relaxation times.

We first consider N classical point particles
of equal mass constrained, like beads, to a ring
of circumference I.. Further, the particles are
distinguishable, labeled by the integers 1,2, ~ ~ ~,
N; otherwise our problem would become the triv-
ial one of free particles. We shall be interested
in nonequilibrium properties when N, L —~ and
N/L-d. The dynamics is the following: When
two particles, say l and 2, collide with relative
velocity v» = Iv, -v J, we allow them to penetrate
with probability p(v»):

Iv„l

The reason for choosing this particular function
of v» instead of a more general one will become
clear when we discuss the solution.

We note that p» vanishes for small relative
velocities and approaches l for large relative
velocities. Further, P» contains a parameter c
which can be varied from free particles, c = 0,
to hard rods, '~' c- ~. We might then call our
problem that of "soft" rods.

Thus, the model we are considering is a true
many-body problem. It contains a stochastic ele-
ment from the beginning, and hence is not time-
reversal invariant; it cannot be derived from a
Hamiltonian.

In this note, we investigate the eigenfunctions
of the Liouville equation

The Liouville operator, when no x =x +l, isj+
L = -Q.v .(s/sx. );jPj j' (4)

z is both the velocity and position coordinate
for the jth particle. It is clear that collisions in
this problem merely rearrange velocities with-
out changing their values. Thus if we start with
velocities vl &v2& ~ ~ ~ &vN, these particular val-
ues are conserved by the Liouville operator L.
We shall assume that the velocities are in fact
distributed with a density p(v), normalized so
that fp(v)dv =d.

Consider a particular arrangement of particles
and velocities on the ring, first without regard
for identities. The particles are ordered with
coordinates O~xl&x2& ~ ~ ~ &xN&L, the set of
which is denoted by X. The first particle has a
label Ql and velocity Pl, the second Q2 and P2,
etc. Ql, Q2, ~ ~ ~ and Pl, P2, ~ ~ ~ are two permu-
tations of the integers 1, 2, ~ - ~, N denoted by Q
and P. Therefore, we may designate a state of
the system by Q, Q, P), and an eigenfunction g
is a function of (X', Q, P).

We assume that g is given by Bethe's hypothe-
sis in the following form: Given a set of com-
plex numbers kl, k2, ~ ~ -, kN, whose real and
imaginary parts increase with the index, then

s4/st = L4 = a4,
where

e = exp(at) y(z, z, ~ ~ ~, z ).

(2)
thus the eigenvalues n are given by

n = -i .v.k. .

We must then show that the boundary conditions


