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ues of the electro-optic coefficient. Such large
values may, in part, account for the structure
due to excitons in electroreflectance spectra. "
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We have measured branching ratios for the isospin-nonconserving particle decays of
the 15.1-MeV T =2 states in N and C to the (0.0, 0+) and (4.44, 2 ) states of ' C. By
comparing ratios of reduced widths with the 0+ and Z states of ~ C for the mirror de-
cays, we show that the form of the isospin impurity in the 15.1-MeV states depends on

Tz'

One of the more intriguing ideas in nuclear
physics is the suggestion that the isospin impuri-
ties observed in nuclear wave functions may be
useful in understanding the cha, rge dependence of
the internucleon force itself. ' That the exploita-
tion of this suggestion has not been entirely suc-
cessful is largely due to the scarcity of suffi-
ciently detailed experimental information on the
size and form of these impurities. Our present
knowledge of the magnitude of isospin admixtures
is primarily obtained from three sources: (1) P-
decay matrix elements, ' (2) electromagnetic se-
lection rules (especially for ET=0, El transi-
tions in self-conjugate nuclei), ~~4 (3} comparison
of isospin-allowed and -forbidden reaction rates. ' '

We have employed a new technique for studying
the form of isospin impurities in nuclear wave
functions by comparing isospin-nonconserving
decays from analog levels in mirror nuclei. In
this Letter we present results for the decays of
the lowest T =

& levels in "C and "N. Similar
experiments are presently under way in mass 9
and mass 17.

Decay branching ratios (BR's) to the ground
and 4.44-MeV states of "C were measured using
the reactions "B(He, n}' N(15.07) -p+ "C and
"B('He,p) "C(15.11)-n + "C. Coincidences be-
tween neutrons and protons were stored in a 64
@64-channel array, one variable being neutron
flight time, the other proton energy. Protons
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asymmetry we must first remove the trivial
charge-dependent effects due to differences in
phase space and barrier penetration. We presum-
ably account for such effects by dividing the
branching ratios by the l =1 penetrabilities (r
=3.4 F was used) to obtain the ratios of reduced
widths,

8'(0')/8'(2+) = [BR(0')/P(0') ]

x [BR(2+)/P(2+ )]-'
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FIG. 2. Differential branching ratio measurements
for decays of the 15.1-MeV T= 2 states in 3N and 3C

to the ground and 4.44-MeV states of C. Branching
ratios were obtained by integrating over Oc m .

check on our experimental technique, we have
measured two BR's which should be close to unity
and obtained 1.05+ 0.11 and 0.98+ 0.05 for the
"C(6.87) —' C(0.0)+n and "F(3.58) —"0(0 0)+p
decays, respectively. Our BR's for the T = 2

states are listed in Table I, along with values
for l", I", I'p, I'„, I'p, and I'„obtained by
combining our results with those of recent reso-
nance and coincidence studies. ' "

The most striking feature of our results are the
marked differences between the mirror transi-
tions in "N and "C. To interpret the observed

However, the large asymmetry is still present in
the ratio of reduced widths, also listed in Table I.

We shall use first order perturbation theory to
derive an expression for the ratios of reduced
widths. We expect that the isospin-nonconserving
interaction can reasonably be treated as a pertur-
bation since presumably the T = —,

' admixtures are
small [I =1.17 + 0.21 keV (Refs. 8 and 10) in '~N;
I"=6.2 + 1.1 keV (Refs. 10 and 11) in "C] and the
T= 2 components of these states have very simi-
lar wave functions. This can be tested by com-
paring the M1 radiation widths of the 15.1 —0.0
transitions in "N and '3C. If the 15.1- and 0.0-
MeV states were eigenstates of isospin, these
AT =1 transitions would have identical widths
(see Ref. 4). Recent electron scattering studies"
give an M1 width in "C of 25+7 eV. Using our
value for I" /I' and measurements of I'p, l'&,/I'
and the E2 M1 amplitude ratio from the reaction'
"C(p, yo), an Ml width of 27 + 5 eV is found for
the state in ' N. The excellent agreement sup-
ports our assumption that isospin impurities in
the 15.1-MeV states are small. To our know-
ledge this is the first case where the equality of
~T =1 y-radiation widths has been tested.

In first-order perturbation theory the initial
(mass 13, r = 2) and final ('2C+nucleon) states
may be described in an obvious notation as

Ii&=Ia, r=-.', r &++.p (r )15., r= .', r. &,
-

Z S S Z S Z

If& =&Ic, r=o, o&+Z.5 Id. , r=l, o&)lr=l, r &,

Table I. Some properties of the decays of the 15.1-MeV 7 =2 states in C and N. See text for references to
other work.

BR(0+) BR(2') 0 2 (0+ )/ g P (2+ )
a (keV)

r
YQ

(ev)

or I'
PQ ~Q

(keV)

or I'
P i ni

(keV)

1 N (15 07) 0 202 + 0 020
C (15.11) 0.065 + 0.014

0.121+ 0.015
0.250 + 0.036

1.18 + 0.11
0.17 + 0.03

1 17+0 21b 27y5
6.2 +1.1c 25 +7

0.24 + 0.05
0.40 + 0.11

0.14 + 0.03
1.55 + 0.35

Error in ratio of 0 's is less than that obtained by combining BR's because of systematic effects which cancel
in ratio of 8 's.

bObtained by combining results from Refs. 8-10, and present work.
cObtained by combining results from Refs. 10-12.
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where the sums run over all possible admixed
states. In the case where Tz =+—,',

&flf& =ZP,.(T,) &c, T =-.'Ib, , T =-,'&

+(~)'"Z b *(d, &=21~, T=z& *o(Pb)

We will assume that there are no fortuitous can-
cellations in first order and neglect higher order
terms.

The Tz dependence of the P; can be made expli-
cit:

P;(&,) =(E, Eb -)-'&b. , T I.H l~, T &.

We then expand the isospin-nonconserving opera-
tor in spherical tensor operators, H~c = T0 + T0'
+ T0, and then use the Wigner-Eckart theorem
to yield

P, (T =+-,').=(E -Eb.)-'

xl(')"'&b ll&'lln&*(a)"'(b. ll&'ll~&]

The ratio of reduced widths to final states |.- and
c' becomes

Coulomb mixing alone can account for the mea-
sured BR's. Exploratory calculations by Maque-
da'4 using spherical shell-model wave functions
and excitation energies do not reproduce our
BR's. Reliable mixing calculations, of course,
cannot be made until more of the T = ~, 4= &

states in the A =13 nuclei have been identified.
It appears that, at present, the most promising
avenue for additional work lies in careful experi-
mental and theoretical studies of these T =-,' lev-
els.

It is interesting to note that the form of isospin
impurities in T = 2 states of Tz = 0 nuclei may be
studied by comparing neutron and proton decays
of these levels with analogous T = —,

' states. If im-
purities in the T =-,' states can be neglected, a
difference in reduced widths for neutron and pro-
ton decays could be interpreted as arising from
an isospin admixture containing both T = 0 and
T = 1 components.

We would like to thank A. P. Shukla, D. Ashery,
and H. B. Mak for valuable help in checking these
results, and E. Maqueda for many interesting
conversations and calculations.

g.P.(T )&clb &+(2)~~2+ b.*&d.la&i i z i
g.P.(& )&c'lb.&+(-')'"Z b "&d.'I&) 'ii z

We can see immediately that a difference in the
ratio of reduced widths for Tz =+-,' implies the
following.

(I) Isospin impurities must be important in the
mass-13 T=& levels; T=1 impurities in the "C
states alone cannot produce the observed effect.

(2) If impurities in the '2C wave functions can
be neglected, the impurity in the T=& states
must arise from the admixture of more than one
state. [It is very likely that b;«P; since (Ec
—Ed& )»(Ea-Ebi ).~

(3) If we further assume that the energy denom-
inators (Es-Eb; ) are independent of Tz, the iso-
vector and isotensor matrix elements must have
comparable strength. The validity of the assump-
tion that the energy denominators do not differ
significantly for Tz =+—,

' is difficult to assess, as
the T = —,', J'T = & states in this energy region have
not been located experimentally and shell-model
calculations" predict a T =-,', 4 =

& state very
close to the lowest T=2 level.

It would, of course, be interesting to see if
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NEUTRON PARTICLE-HOLE STATES OBSERVED
BY INELASTIC PROTON SCATTERING FROM ' Xef
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Neutron particle-hole states have been observed in the decay of isobaric analog reso-
nances formed in the reaction ~ Xe plus proton. Analysis of the on-resonance inelastic
data has given inelastic proton partial widths, spectroscopic factors, spins, and pari-
ties of several of the observed particle-hole states.

We have recently completed an extensive se-
ries of measurements of elastic and inelastic
proton scattering from Xe i, n the bombarding
energy region 9.77 to 12.98 MeV. Analysis of the
elastic-scattering data' shows that well-defined
isobaric analog resonances occur at bombarding
energies of 10.270 (f»,), 10.874 (p», ), 11.255

(P„,), 11.583 (f»,), and 11.810 MeV (f„,) and
that the corresponding compound states in "Cs
are analogs of states in "Xe formed by addition
of a neutron to the closed N= 82 neutron shell in
the configurations indicated above.

Virtually all the inelastic excitation functions
show resonant structure. Many have an even
more distinctive behavior in that they exhibit
sharp peaks at some, but not all, of the analog
resonances described above. These peaks in the
excitation functions are symmetric and typically
have a height which at angles greater than 90' is
10 to 20 times higher than the nearby off-reso-
nance background. In common with other work-
ers who have studied similar nuclei, ' we identify
these inelastic transitions as being due to the ex-
citation of neutron particle-hole states in '"Xe.
The motivation for this Letter is to show that it
is possible not only to make an identification as
to the nature of these states but also to use the
observed data in conjunction with a simple theory
to extract information about their spins and pari-
ties and to some extent about their configura-

tions.
The neutron particle-hole states which we wish

to discuss are expected to have configurations in
which the particle is in a level above N= 82

(2f„„3P„„3P„„2f„,), and the hole is in a level

bility of h»» or d,» hole states will be ignored in
the present analysis because of the high angular
momentum involved in a h»„ transition and be-
cause these two levels lie further from the Fer-
mi surface in '"Xe. Particle-hole states will
therefore be considered to be populated by the in-
elastic emission of a d», or s», proton from the
analog state formed in the reaction.

The theoretical expression used in our analy-
sis' is derived from the R-matrix theory as de-
veloped by Lane and Thomas. 4 We assume that
the single-level approximation is valid and fur-
ther that the background matrix Rg, is zero.
This second assumption is equivalent to the as-
sumption that on resonance, the direct contribu-
tion to the inelastic cross section may be neglect-
ed in comparison to the compound contribution.
This assumption is only partially justified since
there is a small but clearly present off-reso-
nance yield in the inelastic excitation functions.
We justify this assumption on the basis that our
fits at backward angles are reasonably good and
that, to our knowledge, no theory which properly
takes account of the direct contribution is avail-


