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We present data for signals associated with the crossing of fine structure levels of a
hydrogenlike atom when these levels are excited at a uniform rate and coupled by the
application of a static electric field. With modest electric field strengths, strong
crossing signals are seen even when the lowest order of coupling for the two levels in-

volved is third order.

Series! has proposed measuring Lamb shifts in
hydrogenlike atoms by observing signals associ-
ated with the crossing of levels of opposite parity
when these levels are coupled by a small, static
electric field and the rate of excitation to them is
modulated. He predicts that under these condi-
tions there will be a sharp change in the ampli-
tude of modulation of the fluorescent light from
these levels as they are “tuned” through the re-
gion of crossing by varying an external magnetic
field. In a recent Letter Hadeishi? reported the
experimental confirmation of Series’ prediction
for S-P crossings in the #=4 term of He™. The
purpose of the present Letter is to present data
which demonstrate that crossing signals of com-
parable strength can be seen even when the rate
of excitation is held constant.

Series’ detailed calculation was carried out on-J

ly for the case where one of the two states in-
volved in the crossing does not radiate. More
specifically, he assumes that one of the states
has an effectively infinite lifetime. For this par-
ticular situation he correctly predicts the ab-
sence of a crossing signal when the rate of exci-
tation is constant.® Wieder and Eck* have exam-
ined the more general case where both states ra-
diate but may have different lifetimes and may or
may not be radiatively connected to common low-
er energy states. Their general result for the
signal when the atoms are excited at a uniform
rate [ Eq. (1) of Ref. 4] is quite complicated, but
simplifies considerably when there is no coher-
ence in the excitation process and the two states
involved cannot decay to common final states.
This simple expression, which is just the one ap-
propriate for discussing the dc signal for the S-
P crossings investigated by Hadeishi, is

(fa—fb)(ra/?a—rb/yb)(ya+wb)l V|2

527 7a sy 5% [(ra + yb)/ZJ2 + l(*/a + yb)/ZF(TZV!"/YaYb) ’ )

where 7, is the rate of excitation to state a; f, is the fraction of the decay photons from state @ which
are detected; Ya=§TrTa, where 74 is the lifetime of state @; A is the separation of levels @ and b; and
V is the matrix element of the interaction coupling states a and . All of the quantities y, A, and V

are to be expressed in frequency units. The signal is expressed in terms of the properties of the un-
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coupled states, i.e., those for V=0. Thus, A is
very nearly a linear function of magnetic field
strength in the region of the crossing. For our
present discussion, V is the Stark matrix ele-
ment connecting states a and b. The first two
terms of Eq. (1) give the background signal from
states a and b far from the crossing. Term
three, the crossing signal, has a Lorentzian line
shape with a full width at half-maximum of

2 1/2
(Ya+Yb)[ 1+|2V] /wawb] X

Lamb and Sanders,® in connection with their in-
vestigation of the »=3 term of hydrogen, ob-
tained an expression for the resonance signal
when atoms are excited by electron bombard-
ment and states of opposite parity are coupled by
an rf electric field. Their result [ Eq. (6) of Ref.
5] is identical in the limit of zero rf frequency to
the third term of Eq. (1), when their V is re-
placed by 2V. This factor of 2 follows from the
fact that in the limit of zero frequency both of
the rotating electric fields into which their lin-
early polarized rf field can be resolved are ef-
fective in coupling the states. Thus, the crossing
signal predicted by Eq. (1) is just the zero-fre-
quency limit of the more familiar electric dipole
rf signal.

The predictions of Eq. (1) were verified using
the apparatus shown in Fig. 1. An electron-bom-
bardment tube with a Pyrex envelope was evacu-
ated, outgassed, sealed off, and then filled to the
desired pressure by diffusing helium through its
walls. This tube was placed between the pole
faces of a 12-in. electromagnet and oriented so
that the magnetic field, ﬁ, was parallel to the di-
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FIG. 1. Diagram of the experimental apparatus.
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rection of the electron beam. The radiation emit-
ted into a small solid angle at right angles to the
electron beam was focused onto the face of a pho-
tomultiplier after passing through a polarizer and
a 4686-A interference filter to isolate the n=4 to
n=3 line of He*. The photomultiplier signal was
amplified by a dc amplifier, filtered by an RC
filter with a time constant of 0.3 sec, and re-
corded as a function of magnetic field strength.
An electric field at right angles to the magnetic
field could be produced by applying a dc voltage
to a pair of Stark plates with a separation of 1.30
cm.

Figure 2 shows recorder tracings of the photo-
multiplier signal versus magnetic field strength.
Below 1000 G the signal is distorted by effects
associated with the confinement of the electron
beam by the magnetic field. A voltage of +45 V
was applied from the last grid to the anode to
help suppress the low-field confinement effects
and secondary electron emission from the anode.
Trace A of Fig. 2 is for zero volts on the Stark
plates. The electric field responsible for the
first and third of the S-P crossing signals is the
transverse (i.e., perpendicular to B) motional
Stark field associated with the motion of the He*t
ions through the magnetic field. The second S-P
crossing signal requires a longitudinal electric
field. This is provided by the grid-to-anode volt-
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FIG. 2. Photomultiplier signal versus magnetic
field strength for a helium pressure of 19 y, an elec-
tron beam of 1 mA at 300 V, and with the polarizer
oriented perpendicular to the magnetic field. Traces
A, B, C, and D are for 0, 100, 200, and 300 V, re-
spectively, applied to the Stark plates.
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age mentioned above. All of the arrows in Fig. 2
are placed at the theoretical field strengths of
the indicated crossings calculated using Garcia
and Mack’s® theoretical values for the fine struc-
ture splittings in the » =4 term of He™.

Traces B, C, and D show the result of applying
a voltage to the Stark plates. With increasing
voltage the S-P crossing signals severely broad-
en and blend into the background. The S-D sig-
nals, which are the result of second-order Stark
coupling, appear with a Lorentzian line shape
(trace B) and change with increasing voltage to a
predominantly dispersion line shape (traces C
and D). This latter line shape is associated with
the fact that the S and D levels involved in the
crossings can decay to common P levels of the
n=3 term of He*. This gives rise to contribu-
tions to the signal from term 7 of Wieder and
Eck’s general expression [Eq. (1) of Ref. 4]
which have been explicitly neglected in deriving
Eq. (1) above. The S-F signals are the result of
third-order Stark coupling. The strongest of
these in trace D represents a 17% increase in the
light signal reaching the photomultiplier. We are
presently investigating the extent to which the S-
F crossing signals and the S-P signal at 9.5 kG
can be used for precision measurements of the
fine-structure splittings.”

The S-P crossing signal at 1 kG has been seen
by Hatfield and Hughes.®

Hadeishi? has investigated the S-P crossings at
1 and 2 kG employing 100% modulation of his
electron beam at a frequency of 2.8 MHz and
phase sensitive detection at this same frequency.
This technique produces 100% modulation of the
total light signal and, therefore, a signal through
the phase detector proportional to the dc light
level. Thus, one will see a crossing signal pro-

portional to the third term of Eq. (1) above, even
if there is no signal from the mechanism dis-
cussed by Series.! To separate a modulation-in-
duced crossing signal from the dc signal one
must take the difference between the signal for a
given modulation frequency, f, and that for very
small f. We have carried out the appropriate
calculation for the 1-kG crossing and predict that
approximately 60 % of the dip at the crossing
shown in Fig. 2 of Ref. 2 is a dc effect in the
sense that it will still be there as the modulation
frequency is reduced toward zero.
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