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PERIODIC PULLING AND TURBULENCE IN A BOUNDED PLASMA*
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Experimental results obtained with a @ machine demonstrate the effect of a nonlinear
mechanism called periodic pulling that has been proposed to explain the transition to
turbulence in a bounded plasma characterized by weakly unstable modes. The effect is
characteristic of any distributed-parameter system that can be described by the van der
Pol equation and is related to phenomena observed in solid-state oscillators and the gas

laser.

The transition from laminar flow to turbulence
in a physical system is generally taken to imply
the introduction of new degrees of freedom in the
form of new modes of oscillation at incommensu-
rate frequencies.! However, certain questions
arise when this concept is applied to experimen-
tal observations of drift instabilities in a @ ma-
chine. At low instability levels the frequency
spectrum consists of discrete, harmonically re-
lated frequencies that correspond to various azi-
muthal mode numbers. At slightly higher ampli-
tudes the spectrum suddenly becomes more or
less continuous, as is characteristic of turbu-
lence.? There is some question, however, as to
how this transition can occur. The unstable plas-
ma is a bounded system with discrete modes,
and at the weakly nonlinear levels typical of the
experiments it would be expected that the spec-
trum could be resolved into commensurate com-
ponents characteristic of the initial mode fre-
quencies, which are related as a series of as-
cending integers.

It has been proposed that the introduction of in-
commensurate frequencies into the spectrum can
be explained by a nonlinear mechanism called
periodic pulling,® which is essentially the incom-
plete entrainment of a mode by a perturbation
whose frequency and amplitude are just beyond
the range at which the mode would be locked to
the perturbation. Under these conditions the
mode- is frequency and amplitude modulated, pro-

ducing a multiplicity of sidebands at frequencies
incommensurate with the initial mode frequency.
Periodic pulling is characteristic of any system
that can be described by the van der Pol equation.

This Letter reports on recent experimental re-
sults that support the explanation given above. A
preliminary account has been given earlier.?

The analysis makes use of a model in which the
modes of oscillation in a weakly nonlinear unsta-
ble plasma are represented as an ensemble of
weakly coupled van der Pol oscillators, with the
spatial parts of the mode functions being identical
to those of the linear case.® Therefore, we con-
sider a perturbed mode as represented by the van
der Pol equation with a harmonic forcing term:

2,

Z—% —6(1—Bx2)w02~f + wo"‘x = wOZE coswit, (1)
where the perturbation amplitude E is small in a
sense described below, and the perturbation fre-
quency w; is approximately equal to the free-run-
ning frequency w,. Here, € is a small parameter
that characterizes the nonlinearity and 8=35/7,
where 7 is the linear growth rate and 6 is associ-
ated with the saturation mechanism. The quanti-
ty ¥ can represent any characteristic perturba-
tion variable, say the ac density or potential. If
the solution of Eq. (1) is written

x(t)=A(t)sin[ wlf—<ﬂ(t)], (2)

where A (¢) and ¢(f) are slowly varying functions
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of time, then the amplitude and phase obey the
following coupled equations®°;

dA/dt=ef(x,x)A + u(E/2)w, cos®, (3)
de/dt= u[ Q- (E/24)w, sing], (4)

where Q4= w;-wq, f(r, %)= wy(1-px%)%, and € and
K1 are smallness parameters that satisfy the re-
lation u <€<1, but 4 >€% When u=0 the usual
van der Pol solution is obtained, A=A,.

In the present analysis we assume E/A=0(u)
and Q,/w,=0(u). Physically this means that we
are treating small adiabatic variations on a time
scale ut about the steady-state oscillations of
amplitude 4, and frequency w,. We note that the
condition ¢ =0 can be satisfied when a=Ew,/24%,
>1; this corresponds to the mode-locking condi-
tion that has been described earlier.? In the
present work we are interested specifically in
values a <1.

Equations (3) and (4) imply that the perturbed
van der Pol mode is subject to simultaneous am-
plitude and frequency modulation on a time scale
ut. The quantity ¢ in (3) and (4) is given by?

) n
9=Q,1+2 21% sinn®,'t, (5)
n=

where £,'= (1-a?)¥2Q.t and k=[(1-a?)2-1]/[(1
—(12)1/2 + 1]

The simultaneous amplitude and frequency mod-
ulation by the complex function in (5) represents
a case of multitone modulation, which can pro-
duce an extremely complicated frequency spec-
trum. However, under typical experimental con-
ditions k <1 and only the Fourier components of
¢ corresponding to the first few values of # need
be considered. The combined AM-FM sideband
spectrum for the =1 component of ¢ is given by?

- M
xl(l)= Z Jm(K) [l—m}— :I
m= —0
xexpli(w_+mQ _")t], (6)
0 0

where M is the effective amplitude-modulation in-
dex (M <1). Since k<1 we need only consider
the sideband component corresponding to m=+1
and (6) shows that sideband cancellation can oc-
cur on one side of the unperturbed frequency un-
der appropriate conditions, i.e., M~k and m=+1.
Moreover the nonvanishing sideband will always
lie on the side of w, away from the perturbation
frequency w;. This is the case since (6) shows
that when M~ k sideband cancellation occurs for
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w=wy+ 2’| when £,">0 and w=w,~|2,’| when
©,’ <0. Equation (6) describes the effect of a sin-
gle Fourier component of the modulation function
in (5). However, the results hold for all of the
Fourier components (see Fig. 1) and a key fea-
ture of the analysis is the prediction that rever-
sal of the relative positions of w, and w; should
cause the sideband structure to reflect about w,,.
Equation (5) also implies that the logarithm of
the sideband amplitude is a linear function of fre-

- quency.?

The sideband cancellation effect is actually an
application of the so-called analytic-signal theo-
rem,® in which a real function of time s(t) is used
to form a complex function S(¢)=s(¢) +io(¢). If its
real and imaginary parts are reciprocal Hilbert
transforms, the complex function S(¢) is analytic
and the Fourier transform of S(¢), which we de-
note by F{S(¢)}, satisfies the condition®

F{s®}+#0, w>0;
F{S@)=0, w<o.
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FIG. 1. Diagram to show sideband cancellation in
combined amplitude and frequency modulation. The top
spectrum corresponds to the effective modulation func-
tion, with components 2y, 292, etc. In the approxi-
mation used in the text each such component produces
one pair of amplitude-modulation sidebands wy=Qy,
wy*2£y’, etc., and one pair of frequency-modulation
sidebands w;+Qy, w,+22, etc., with the relative
phase relations as shown in the two center spectra.
The resultant asymmetric spectrum is shown at the
bottom. This pattern applies for £, <0.
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The converse relation can also be demonstrated.
That is to say, a single-sided frequency spec-
trum (with respect to the original unperturbed
frequency) can only be produced by a time func-
tion of the form S(¢)=s(¢)+io(t), where s(¢) and
o(t) are reciprocal Hilbert transforms, as is the
case for sin¢ and cos¢ in Eqs. (3) and (4).

It is interesting to note that the analytic-signal
theorem is the counterpart of the well-known
Kramers-Kronig relations,” with the roles of the
time and frequency variables being interchanged.
The quantity S(¢) plays the role of the response
function in the Kramers-Kronig relations and the
notion of causality or one-sidedness in time is
replaced by the one-sided frequency spectrum.?

The results of experiments carried out in con-
nection with the present analysis are shown in
Fig. 2. These experiments were performed in a
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FIG. 2. Experimental results to show the reversal of
the sideband spectrum as a function of the sign of Q¢’
= const X (wj—w() where w, is the unperturbed mode fre-
quency and w; is the frequency of the perturbation.
Logarithmic vertical scale; total frequency width=2
kHz. Upper trace: unperturbed mode. Center trace:
unperturbed mode at 3.115 kHz (solid arrow), pertur-
bation at 3.205 kHz (hollow arrow), 2y’ >0. Bottom
trace: unperturbed mode at 3.136 kHz (solid arrow),
perturbation at 2.900 kHz (hollow arrow), £y <0. In
both cases the perturbation amplitude is approximately
20 dB below that of the mode. In these pictures the
frequency increases from right to left.

single-ended @ machine® in which a neutral potas-
sium flux is directed at a tantalum disk heated to
2000°K to produce a low-density (z < 10° cm™3)
plasma in a magnetic field. The oscillations in
the plasma potential due to the drift instability
are detected with a floating probe and displayed
on a spectrum analyzer. In these experiments a
weak signal from a conventional audio oscillator
is coupled to the cold end plate to simulate the
effect of a weak perturbation in the plasma and
the parameter «, discussed above, is somewhat
smaller than unity. A typical unperturbed mode
is shown in the top trace in Fig. 2 while the per-
turbed modes are shown in the center and bottom
traces for the cases £, >0 and ," <0, respec-
tively. The spectrum reversal effect described
above is clearly evident, as is the linear depen-
dence of the logarithm of the amplitude on fre-
quency.

The conditions in these experiments are highly
specialized and have been set up to verify the op-
eration of the periodic-pulling mechanism. In an
actual unstable plasma the role of the perturbing
signal would be played by weak oscillations due
to higher order nonlinear interactions between
unstable drift modes. These weak oscillations
can exhibit second-order frequency shifts due to
Larmor-radius and finite-length corrections,
thus providing the frequency displacement that
leads to periodic pulling rather than mode lock-
ing.?

Periodic pulling provides a means of introduc-
ing incommensurate frequencies into a spectrum
of discrete modes of the drift instability and
these incommensurate frequencies can be trans-
lated to the region near zero frequency by nonlin-
ear mixing effects. The net result is the appear-
ance of low-frequency transverse electric fields
that can play a role in plasma diffusion.

The results described here provide further sup-
port for the van der Pol model of unstable drift
modes in a bounded plasma and appear to be rele-
vant to other systems described by the van der
Pol equation. For example, similar phenomena
have been observed in beam-plasma interactions,®
in avalanche-diode oscillators,!® and in a He-Ne
laser in a weak magnetic field.!*

We are indebted to W. E. Crowe and R. M. Mon-
blatt for help in these experiments.

*Work supported by the U. S. Air Force Office of Sci-
entific Research [AF-1016-68] and the U. S. Atomic En-
ergy Commission [AT-(40-1)-3405].
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We present a microscopic calculation of the effective mass and interactions of He® qua-
siparticles in dilute He®-He? solutions. The theory is first-principles in the sense that it
requires no other information than the bare masses of the helium atoms and a realistic
two-particle potential. In this note we report our findings in the limiting case of zero

concentration.

The properties of a quantum fluid at low temperatures are determined by the elementary excitations
of the system. For a dilute solution of He® in liquid He?, the low-lying excitations are of two types:
phonons originated in liquid He* modified by the isotopic impurities, and a He® single-particle spec-
trum modified by the boson medium. The phenomenological theory of Landau and Pomeranchuk® pre-
dicted that the He® constituents in the solution behave as a Fermi liquid. Recent papers? by Bardeen,
Baym, and Pines and co-workers and by Emery showed that one can indeed estimate from experimen-
tal data the Fermi-liquid parameters: the effective mass of the He® quasiparticles and the effective in-

teractions between them.

We have succeeded in constructing a microscopic theory capable of calculating these parameters
from bare atoms and realistic two-particle potentials. The program consists of two parts. One part
concerns a complete solution of the ground state of the binary boson mixture. The other part assumes
this solution and constructs a correlated basis making full use of available physical information, and
develops a perturbation theory in the correlated representation. This note deals with the second part.
The information required from the first part can be briefly summarized as follows.

For a system comprising N, mass-3 bosons and N,= N-N,; mass-4 bosons, interacting pairwise via

a potential v (), the Hamiltonian is given by

I‘E e A ol
H=), ——V2+ Y V23 7 00r
=12 T N e b e
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FIG. 2. Experimental results to show the reversal of
the sideband spectrum as a function of the sign of @’
= const X (wj—w() where w, is the unperturbed mode fre-
quency and w; is the frequency of the perturbation.
Logarithmic vertical scale; total frequency width=2
kHz. Upper trace: unperturbed mode. Center trace:
unperturbed mode at 3.115 kHz (solid arrow), pertur-
bation at 3.205 kHz (hollow arrow), ;> 0. Bottom
trace: unperturbed mode at 3.136 kHz (solid arrow),
perturbation at 2,900 kHz (hollow arrow), 2, <0. In
both cases the perturbation amplitude is approximately
20 dB below that of the mode. In these pictures the
frequency increases from right to left.



