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We present the most general parametrizations for the trajectory and residue functions
for daughter Regge poles which are consistent with analyticity and unitarity. Our re-
sults are confined to the scattering of spinless particles, but are valid for arbitrary ex-
ternal masses and nonparallel trajectories. We show that except in the special case of
pairwise-equal external masses, an infinite number of Lorentz poles contribute to the
scattering amplitude at s =O. We obtain a simple parametrization of the scattering am-
plitude for s O, t ~, which involves powers of both t and lot.

Freedman and Wang' showed some time ago
that any Regge pole which contributes to an s-
channel scattering process 1+2-3+ 4 in which

m, c m~ and m, m~ must be accompanied by an
infinite set of daughter Regge poles. The behav-
ior of the trajectory and residue functions for the
daughter poles is restricted near s =0 by the con-
dition that apparent singularities in the individual
terms in the Regge expansion cancel in the full
scattering amplitude. In particular, successive
daughter poles have opposite signatures, trajec-
tory functions n„(s) which are spaced by integers
at s=0, nu(0)=+0(0)-n, n=1, 2, ~ ~ ~, and: educe. d
residue functions P„(s) which diverge as s~ for
s -0. Although several authors' have derived the
first few terms in the Taylor series expansions
of nu(s) and su(s) about s =0, rather little has
been known about the general form of these func-
tions. ' 4

In this paper, we give the most general param-
etrizations of the daughter trajectory and residue
functions which are consistent with the require-
ments of analyticity and unitarity (factorization

of the Regge residues). The present results are
confined to the scattering of spinless particles,
but are valid for arbitrary external masses and
nonparallel daughter traj ectories. Except in the
special case of pairwise-equal external masses
(m, = ms and m3 = m4), we find that the set of Reg-
ge poles in a parent-daughter sequence neces-
sarily corresponds at s = 0 to a reducible repre-
sentation of the Lorentz group, rather than to an
irreducible representation, as is often assumed.
This result is of considerable significance for the
group-theoretical approach to the classification
of Regge poles. Our results have immediate
practical applications to the parametrization of
daughter Regge trajectories and residues away
from s =0 and to high-energy phenomenology.
We obtain, in particular, a simple parametriza-
tion of the scattering amplitude for s-0, t-~,
which involves powers of both t and lnt.

Our construction of daughter trajectory and
residue functions is based on the Lorentz expan-
sion for the spinless scattering amplitude. ' We
begin with the expression given in Etl. (10) of
Ref. 5,

A(s, t, u) = 2m+ (2n + 1)p„(s)(sinn@ ) [I'(n +1)] g&(-1)

x ([1'(f+ 1)1"(2&„-&+1)c) " (coshpl)Ct " (coshp3)-(t —l-2)]( ~ k)

(1) AxD ~ ++t 2 (coshpt)+(m4/ml) u [1-1,3-4, t-u]]+background integrals.
n

The sums run over all Regge poles to the right
of some (arbitrary) line Rem = -I'-1 in the com-
plex j plane, and over those values of l for which
Rem~ o -I + l-1. The background integrals in
this expression are analytic functions of s for
s-0, and do not enter in our argument. The
variables coshPt and coshP„are simply related

to the Mandelstam variables t and u, coshpt
=[ml +m3 -t]/2mlma, coshPu= [ml +m4 ~]/
2mlm4. The functions D nu+ t 2"' (Gegenbauer
functions of the second kind') are analytic func-
tions of s for s-0 provided the oz are analytic
at that point. As a result, the s =0 singularities
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in the individual terms in (1) are isolated in the
Gegenbauer polynomials CI( ~)(coshpz), coshp,
= ez/mz. For s -0 and unequal external masses,
the particle energies diverge (e.g. , coshp, = [s
+m, -m, ']/2m~Is), and the 1th term in (1) for a
given en contains terms which diverge as s
s ~+ ~, ~ ~ ~ . These singularities will appear in

A(s, t, u) unless the Regge poles appear in sets
with the parent-daughter properties. The prob-
lem of constructing the most general daughter
trajectory and residue functions is just that of
finding those forms for a~(s) and P„(s) for which
all the singularities in (1) cancel at s =0 for arbi-
trary, but finite, values of F, and arbitrary,

nonparallel trajectories a„(s). The construction
is subject to the condition that the Regge residues
@(s) factor; this condition is a direct conse-
quence of unitarity as applied to the partial-wave
amplitudes. ' The proof that the results for nn
and P~ given in Eqs. (2) and (4) lead to an analytic
scattering amplitude involves the substitution of
(4) into (1), expansion of the trajectory-depend-
ent functions in powers of (a„+n-o'0), and the
use of two new sum rules for the Gegenbauer
functions. ' Details of the construction of nn and

@ and of the proof of analyticity will be published
elsewhere.

The most general form for the daughter trajec-
tory functions is given by

n
n (s)= P I'(n+1)l'(2n (s)+2-n)[l(n-j+1)I'(2n (s)+2~-j)] s a.(s).

n j=o n n

Here ngs) =n~(s)+n. Note that n~(0) =n0(0) for
all n Th.e set of functions a&(s) is fixed; the

same functions appear in the expressions for all
nn. ' These functions may consequently be deter-
mined successively from the set of Eq. (2). A

given function an will clearly depend on all the
trajectory functions aj for j &n. The aj must be
analytic at s =0 if A(s, t, u) is to be analytic at
that point. This condition leads to the relations
among the derivatives of the nn at s =0 charac-
teristic of daughter Regge trajectories. In par-
ticular, the mth derivative of en at s = 0 can be
expressed in terms of the first m derivatives of
the nj with j &m, provided that m &n. The nth
and higher derivatives of en are arbitrary. The
results previously available2 include only expres-
sions for n„'(0) and a„"(0); these agree with the
expressions derived from (2).

Equation (2) contains all the information on the
behavior of the daughter-trajectory functions
which can be derived from the requirement that
A(s, t, u) be analytic at s =0. We obtain a strong-

er result by using two additional facts: (i) The
trajectory functions nn are real analytic func-
tions of s with only dynamical right-hand cuts.
(ii) The behavior of the imaginary part of nm at
the physical s-channel threshold is different for
different threshold values of Reo.„(s).' Since the

nn are all different at s =0, these observations
lead immediately to the important results that
the daughter trajectories cannot be strictly par-
allel to the leading trajectory (or to each other)
and that the aj cannot be identically zero. It is
then easily seen from (2) that the mth derivative
of o~(s) at s =0 increases in general for large
n (n»m) as n2~. As a result, the range of s
over which the first few terms in the Taylor se-
ries expansion for o'„(s) provide a reasonable
approximation for this function shrinks rapidly
with increasing n. Phenomenological models
based on such expansions must consequently be
treated with great care. '

The functions P„(s) are somewhat more compli-
cated. %e obtain

P (&)=(4sinhP sinhP ) P (s)=(4p p /m m ) p (g),

where the reduced residue p~ is given by

I"(n + 1)I'(2a + 2) I'(a -n + 1)

I(n+1)I'(2n +2-n)
(4)
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The Gegenbauer functions and the last two factors in (4) describe the coupling of the nth trajectory to
the particles at the initial and final vertices. The functions bj & and b& &

' must be analytic at s =0
and must be adjusted to ensure that p„vanishes for on a negative integer, but are otherwise arbitrary
and independent of the a~. Their behavior can be determined only by dynamical considerations. The
essential features of the factor B~ are determined entirely by the trajectory functions:

I . I'(n+ 1)F(2o + 2-n)
, s C. (s)

1 g '(n ) j F(n-j+1)F(2n +2~-j)
n n j-0 n

n
d d j I'(n+ 1)F(2@+2-n)

dz n dz ~ j I (n-j+ l)F(2@+2~-j)g '(g) = —g (z) = — s a.(s)
j=1

(5)

(6)

The functions aj in (6) are the same as those
which appear in (2) and can be expressed in
terms of the Qn The functions cj must be analy-
tic at s =0 and must be adjusted to eliminate any
poles in B~ associated with zeros of the function
(1-gn'). The cj are otherwise unrestricted. Ap-
propriate cj are easily constructed. It is easily
checked that the B are necessarily functions of
s and differ for different values of n. This factor
was omitted in the forms for Pn proposed by sev-
eral authors. 4 Their results for A(s, t, u) are
consequently analytic at s =0 only in the unphysi-
cal case of strictly parallel trajectories, an(s)
=—n0(s), or in the special case of pairwise-equal
external masses.

The parametrization for Pn given in (4) contains
all the information on these functions which fol-
lows from the analyticity of A. (s, t, u) at s =0 and

the condition that the Regge residues factor. For
appropriate choices of the functions bj &

&
6j

and cj, pn will be a real analytic function of s
with only the dynamical right-hand cut and poles
of order n, n-1 ~ ~ ~ at s=0.

The result for Pn has several important fea-
tures: (i) The factor Bn is universal and appears
in Pn for all reactions which involve the set of
trajectories fnn). This result holds also for the
couplings of these trajectories (of I orentz type

j, =0) to particles with spin. (ii) The first n-1
derivatives of the function sn pn are determined
at s =0 by the first n-1 derivatives of the sets of
functions s&P and nj, j &n. The nth and higher
derivatives of snP„are arbitrary. Since the con-
ditions on the first n-1 derivatives must be sat-
isfied if A(s, t, u) is to be analytic at s =0, the
parametrization (5) is as general as possible.
(iii) The lack of symmetry in Pn associated with

the distinguished role of particles 1 and 3 in (4)
is only apparent. By appropriate rearrangement
of the Gegenbauer functions and the last two fac-

tors, the result can be brought into an equivalent
form with coshP, and coshP, replaced, for exam-
ple, by coshp, and coshp4. (iv) The reduced res-
idues pn are analytic functions of the external
masses. All (nonzero) mass configurations are
encompassed in a single expression. There is
no distinction between equal-mass scattering
(m, = m~ and m, = m4), equal-unequal mass scat-
tering (m, =m2, mm 4 m4 or m, w mm, m~ = m4), and
the general case (m, xmm, m, g m4) as far as the
form of Pn is concerned. This is not true of the
partial results for Pn obtained by some authors. 2

In these expressions, the general-mass results
become singular or change form as the mass dif-
ferences are reduced to zero.

We can immediately establish several results
which are of considerable significance for the
Lorentz group approach to the classification of
Regge poles at s =0. We note first that the terms
in (1) can be grouped at s =0 according to the or-
ders of the Gegenbauer functions D ~„+)
If all terms in (1) vanish at s =0 except for the
single term proportional to D ~ 2"', the en-

0
tire sequence of parent and daughter Regge poles
will correspond to a single Lorentz pole and can
be classified as a single irreducible representa-
tion of the Lorentz group. If more terms remain,
the representation of the Lorentz group will be
reducible. ' We distinguish three cases:

(i) In the general mass case, there are finite
pieces in every term which fail to cancel at s =0.
The finite pieces which arise from B~ are neces-
sarily present. An infinite number of Lorentz
poles located at the points a, (0)-n, n =0, 1, 2 ~ ~ .
contribute to the scattering amplitude at s =0,
and the parent-daughter sequence of Regge poles
corresponds to a reducible representation of the
Lorentz group. " Near s =0, the contribution of
the parent-daughter sequence to the scattering



VOLUME 22, NUMBER 6 PHYSICAL REVIEW LETTERS 10 FEBRUARY 1969

amplitude assumes the simple form

&(s, f, u) =[e ' +1]exp(n (s)P )[sinhP sinnn (s)]
-iso.,(.s) ~]

0 't

The functions r„j(s) are independent, essentially
arbitrary, and analytic at s =0. Only y, , factors.
Since I PiI —In(t/mlm3) for t»m, m„ this expan-
sion effectively involves powers of 1nt as well as
the usual powers of t. This expansion may be
useful for high-energy phenomenology.

(ii) In the case of equal-unequal mass scatter-
ing, an infinite sequence of Lorentz poles locat-
ed at the points e,(0), o.,(0)-2, o.,(0)-4, ~, con-
tributes to the scattering amplitude at s =-0, and
the representation of the Lorentz group is again
reducible. In this case, the sum onn in (7) is
restricted to even integers, and the sum on j
runs only from 0 to m2.

(iii) For pairwise-equal external masses, only
the term in (1) proportional to D ~ 2"' sur-
vives at s =0. The Regge-pole sequence there-
fore corresponds to a single Lorentz pole and
classifies as an irreducible representation of the
Lorentz group at that point, a result obtained in-
dependently by Bronzan and Jones " The sca
tering amplitude may be approximated for small
s by the first term in (7), n =j=0.

Since it is only in the equal-mass case that the
Lorentz group is a symmetry group of the scat-
tering amplitude at s =0, the foregoing results
are not unexpected (however, see Ref. 10). We
should nevertheless emphasize an unusual fea-
ture in case (ii). Equal-mass particles can cou-
ple only to a single Lorentz pole at s=0 if nz,
= nz, and rn, = nz4, but couple to an infinite number
of Lorentz poles in equal-unequal mass scatter-
ing. This rather startling result is a consequence
of the fact that the residues of the Lorentz poles
need not, and in general do not, factor. '

After this paper was completed, we received
preprints from Professor J. C. Taylor, Oxford
University, and J. B. Bronzan, Massachusetts
Institute of Technology, which contain some of
the above results.

We mould like to thank the Aspen Center for
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the summer of 1968, when part of this work was
performed. Conversations at that time with Pro-
fessor Stanley Klein on his approach to the resi-
due problem were particularly appreciated.

xZ, Z IP I exp(~P )r (s). +o(sP ).
n j=o t n, j
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two cases: There can be a single Lorentz pole at s =0
or an infinite number of poles. Any finite number m& 1
leads to nonfactorizable Regge residues Pz for n &m.

The little group of the Poincare group for unequal-
mass scattering at s = 0 is E(2). Since this is a sym-
metry group of the scattering amplitude, it might be
supposed that the parent-daughter sequence of Regge
poles would classify in this case as a single irreduc-
ible representation of E(2). This is not so. The rep-

resentation coefficients of g (2) are Bessel functions
(cf. J. F. Boyce, R. Delbourgo, A. Salam, and J. Strath-
dee, to be published). No single irreducible represen-
tation can yield the expected t& behavior of A(s, t, u) for
s =O, t ~. The result obtained from a single irreduci-
ble representation of E (2) is also singular in the limits

mI -m2 0, m3-m4 0.
~ J. B. Bronzan and C. Z. Jones, Phys. Rev. Letters

~z, 564 goes).

ERRATA

SUPERCONDUCTIVIT Y IN MULTIPLE PAIR-
BREAKING REGIMES. R. P. Guertin, %. E.
Masker, T. W. Mihalisin, R. P. Groff, and R. D.
Parks [Phys. Rev. Letters 20, 387 (1968)].

In line 38 of the second column on page 388, the
factor 0.006 should be changes to 0.003. The
same citrange should be made in Fig. 1 and the
caption for Fig. l.

TRAJECTORIES IN VENEZIANO'S MODEL.
Ralph Roskies [Phys. Rev. Letters 21, 1851
(1968)].

In condition (A) of the theorem, replace In& by
In&. The first term of the right side of Eq. (22)
should be 2m&&/(In&) ~+, and the right-hand side
of (25) should read

1 V
exp[2''&/(ln&)] && lower order terms.

These changes do not affect the argument at all.
I wish to thank Professor B. Desai for pointing

out the error in (25).

COULOMB DISTORTION EFFECTS IN LARGE—
ANGLE ~1 ELECTROEXCITATION. B. T. Cher-
tok and W. T. K. Johnson [ Phys. Rev. Letters 22,
67 (1969)].

A paper by Dieter Dreschel [Nucl. Phys. A113,
665 (1968)]was brought to our attention after sub-
mission of this Letter for publication. Dreschel
has given an excellent quantitative evaluation of
the model independency of Coulomb corrections
in ~1 electroexcitation and has demonstrated the
inadequacy of the transition radius, Rtr, as a
unique (experimentally determined) quantity for
transverse transitions. Preliminary calculations
of the model dependency of the ~1 radiative
widths in our work indicate, e.g. , a possible ad-
ditional uncertainty of 5-7% in I", for the 11.42-
MeV, 1 level of "Si.

The end of the last sentence of paragraph 6
should read, "' ' ' versus an experimental value
for the ratio of the two shape factors, A =a ("B)/
a+(' N), A = (1.07 + 0.24) % per MeV. "


