If one considers the nucleus in a simple twofluid model, with densities ρ_p and ρ_n , the Steinwedel-Jensen model only accounts for the interaction with the difference density $\rho_p - \rho_n$. But the electron also interacts with the total density, $\rho = \rho_p + \rho_n$ (although the dipole component would presumably be weak), and it is the deformation of ρ which is commonly pictured as leading to fission. If the contribution of such an interaction were significant, the electron could serve as a valuable probe of the dynamical process of fission. Calculations employing such a model are in progress.

Finally we would like to point out the need for more experiments in electrofission and photofission particularly at high energy.

¹Y. N. Ranyuk and P. V. Sorokin, Yadern. Fiz. <u>5</u>, 531 (1967) [translation: Soviet J. Nucl. Phys. <u>5</u>, 377 (1967)].

²H. R. Bowman, R. C. Gatti, R. C. Jared, G. Kiliam,

L.G. Moretta, S.G. Thompson, M.R. Croissiaux,

J. H. Heisenberg, R. Hofstadter, L. M. Middleman,

and M. R. Yearian, Phys. Rev. <u>168</u>, 1396 (1968), and J. Phys. Soc. Japan 24, 545 (1968).

³E. K. Hyde, <u>The Nuclear Properties of Heavy Ele-</u> <u>ments</u> (Prentice Hall, Inc., Englewood Cliffs, N.J., 1964), Vol. III.

⁴D. S. Onley, J. T. Reynolds, and L. E. Wright, Phys. Rev. <u>134</u>, B945 (1964), and earlier work cited therein.

⁵S. T. Tuan, L. E. Wright, and D. S. Onley, Nucl. Instr. Methods 60, 70 (1968).

⁶K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Rev. Mod. Phys. 28, 432 (1956).

- ⁷T. de Forest and J. D. Walecka, Advan. Phys. <u>15</u>, 1 (1966).
- ⁸R. H. Dalitz and D. R. Yennie, Phys. Rev. <u>105</u>, 1598 (1957).

 9 V. H. Steinwedel and J. H. D. Jensen, Z. Naturforsch. <u>5a</u>, 413 (1950).

 $\overline{}^{10}$ H. Bethe and W. Heitler, Proc. Roy. Soc. (London), Ser. A <u>146</u>, 83 (1934).

¹¹L. Katz, A. P. Baerg, and F. Brown, in <u>Proceedings</u> of the Second United Nations International Conference

on the Peaceful Uses of Atomic Energy (United Nations, Geneva, Switzerland, 1958).

¹²W. C. Barber, Phys. Rev. 111, 1642 (1958).

LOWEST T = 2 LEVEL IN ²⁸Si OBSERVED AS A HIGHLY FORBIDDEN COMPOUND NUCLEUS RESONANCE IN ²⁴Mg + α REACTIONS*

K. A. Snover,[†] D. W. Heikkinen,[‡] F. Riess,[§] H. M. Kuan, ∥ and S. S. Hanna Department of Physics, Stanford University, Stanford, California 94205 (Received 20 December 1968)

The lowest T = 2 level in the self-conjugate nucleus ²⁸Si has been observed in resonance reactions initiated by ²⁴Mg + α ($\Delta T = 2$) but not in resonance reactions initiated by ²⁷Al + p ($\Delta T = 1$).

Within the past two years low-lying T = 2 levels in self-conjugate, light nuclei (N, Z), which had been seen as residual states,^{1,2} have been observed³⁻⁵ as compound-nucleus resonances in the isospin forbidden reactions initiated by p + (N, Z-1). However, attempts made over the past year to observe the lowest T = 2 state in ²⁸Si as a compound-nucleus resonance in ²⁷Al + p reactions have been unsuccessful.⁶ Recently the level has been observed⁷ as a final state in the isospinallowed reaction ³⁰Si $(p, t)^{28}$ Si $_{T=2}^{*}$, and has been found to decay predominantly to ²⁴Mg(ground state) + α . Following acquisition of a negative helium-ion source, we observed this level as a compound-nucleus resonance in the twice T-forbidden capture reaction ²⁴Mg $(\alpha, \gamma)^{28}$ Si $_{T=1}^{*}(\gamma)$ - ²⁸Si_{T=0} and the four-times *T*-forbidden scattering reactions ²⁴Mg(α , α_0)²⁴Mg and ²⁴Mg(α , α_1)²⁴Mg^{*}. No resonance was seen in the once forbidden reaction ²⁷Al(p, γ)²⁸Si_{T=1}*(γ)²⁸Si_{T=0}, or in ²⁷Al(p, p_0)²⁷Al, ²⁴Mg(α , p_0)²⁷Al, or ²⁴Mg(α , p_1)²⁷Al^{*}. As in the earlier experiments, ^{3,4} the gamma decay of the 0⁺, *T*=2 level of ²⁸Si was found to proceed via γ -ray cascades through bound 1⁺.

proceed via γ -ray cascades through bound 1⁺, T = 1 levels lying in the region of excitation from 10.7 to 11.4 MeV. The T = 2 level was located by observing a resonance in an unresolved group of γ rays with an energy of \approx 11 MeV. The γ rays were detected with the Stanford University 24cm NaI assembly.⁸ Figure 1 shows the yield curves of γ_0 , γ_1 , and the 11-MeV group, along with on- and off-resonance γ -ray spectra, ob-

^{*}Work supported by the Army Research Office (Durham).

tained by bombarding a 10-keV ²⁴Mg target on a gold backing with a beam of α particles. The apparent slight resonance in γ_0 is attributed to solid-angle summing of the resonant cascade γ rays. The yield in the on-resonance γ spectrum at $E_{\gamma} \approx 9$ MeV is presumably due to transitions from the T = 1 states to the first excited state of ²⁸Si at 1.78 MeV.

The observed resonance energy of $E_{\alpha} = 6.115 \pm 0.003$ MeV, corresponding to $E_{\chi} = 15.221 \pm 0.005$ MeV, is in good agreement with the value of E_{χ}

FIG. 1. Bottom three curves: the yields of γ_0 , γ_1 , and the 11-MeV γ -ray group, as a function of excitation energy in ²⁸Si, produced by the reaction ²⁴Mg(α , γ)²⁸Si (10-keV ²⁴Mg target). Insert: the on-resonance angular distribution of the 11-MeV group. Top curve: the solid line is the sum of three partial gamma-ray spectra at the resonance in ²⁴Mg(α , γ)²⁸Si; the dashed line is the sum of off-resonance spectra. Second curve from top: the yield of γ rays near $E_{\gamma} = 11$ MeV from the reaction ²⁷Al(p, γ)²⁶Si; the dots are for a 2-keV ²⁷Al target, and the crosses for a 5-keV target. The error bars shown are statistical, and the collected charge is for singly charged particles.

= 15.206 ± 0.025 MeV previously measured.⁷ The angular distribution of the 11-MeV group of γ rays, shown in the insert of Fig. 1, is isotropic, as required by the assignment of J = 0 to the resonant level. Also shown in Fig. 1 is the yield curve for a γ ray of energy ≈ 11 MeV produced by the reaction ${}^{27}\text{Al}(p,\gamma){}^{28}\text{Si}$. The strong resonance at $E_p = 3.788 \pm 0.003$ MeV, corresponding to a level at $E_{\chi} = 15.234 \pm 0.005$ MeV, is a resonance detected previously⁶ for which the γ ray was assigned to the 10.6-MeV transition to the 4⁺ state at 4.6 MeV in ²⁸Si. The relative uncertainty in energy between the ${}^{27}Al + p$ excitation curve and the ${}^{24}Mg + \alpha$ excitation curve is estimated to be 0.003 MeV, based on the Q value⁹ of 1.6017 ± 0.0007 MeV for the reaction ${}^{27}\text{Al}(p, \alpha){}^{24}\text{Mg}$.

FIG. 2. The elastic scattering of alpha particles at four angles, observed with a 24 Mg target 6 keV thick, evaporated on a thin carbon backing. The energy scales in Figs. 1 and 2 are derived from the nominal accelerator calibration.

The accelerator was calibrated with the ¹⁹F(p, n)¹⁹Ne threshold¹⁰ at $E_p = 4.2343 \pm 0.0008$ MeV and the ²⁴Mg(α , γ)²⁸Si resonance⁹ at $E_{\alpha} = 3.1998 \pm 0.0010$ MeV.

The particle groups from the ²⁴Mg + α reactions were observed in a 60-cm scattering chamber at several angles. The elastic scattering curves at four angles are shown in Fig. 2. These four laboratory angles 81°, 116°, 144°, and 121½° correspond to the zeros of P_{odd} , P_2 , P_4 , and P_6 (approximately). Observation of the resonance at all four angles supports the assignment of 0⁺ to the resonant state. A resonance was also observed in ²⁴Mg(α , α_1)²⁴Mg* at 121½° and, with lesser certainty, at 104½°. Target contaminants obscured the α_1 peak at the backward angles of 144° and 156½°, and the resonance was not observed at other angles. No effect was observed in ²⁴Mg(α , p_0)²⁷Al or ²⁴Mg(α , p_1)²⁷Al*.

From the γ -ray yield curve of Fig. 1 we can set an upper limit of 2 keV for the total width of the state. From the nonobservation of the resonance in γ rays produced by ²⁷Al +p we obtain $\Gamma_p/\Gamma_{\alpha} < 0.08$, in agreement with previous work.⁷ From the observed strength of the 11- and 9-MeV groups we estimate $\Gamma_{\alpha}\Gamma_{\gamma}/\Gamma = 1.25^{+0.25}_{-0.45}$ eV, if we assume a target composition of 100% ²⁴MgO, where the asymmetric error reflects the uncertainty in the target composition. This value, combined with the previously reported measurement⁷ of $\Gamma_{\alpha}/\Gamma = 0.72 \pm 0.11$, gives $\Gamma_{\gamma} = 1.7^{+0.4}_{-0.7}$ eV, a value comparable with that obtained in ²⁴Mg and ²⁰Ne.^{3,4} From the nonobservation of a resonance in ²⁴Mg(α, γ_1)²⁸Si*, we can place an upper limit of $\Gamma_{\gamma_1} < 0.03 \Gamma_{\gamma}$ on an isospin-violating $\Delta T = 2 \gamma$ decay to the 2⁺ state at 1.78 MeV in ²⁸Si.

We are grateful to L. Wall and C. Wellander for assistance in data accumulation and reduction, and to D. Ramsay for assistance in target preparation.

*Work supported in part by the National Science Foundation.

†National Science Foundation Predoctoral Fellow.

[‡]Present address: Lawrence Radiation Laboratory, Livermore, Calif.

[§]Present address: Physikalisches Institut, Freiburg im Breisgau, West Germany.

Present address: Physics Department, University of Kansas, Lawrence, Kan.

¹J. Cerny, R. H. Pehl, and G. T. Garvey, Phys. Letters <u>12</u>, 234 (1964).

²E. Adelberger and A. B. McDonald, Phys. Letters <u>24B</u>, 270 (1967).

³F. Riess, W. J. O'Connell, D. W. Heikkinen, H. M. Kuan, and S. S. Hanna, Phys. Rev. Letters <u>19</u>, 367 (1967).

⁴H. M. Kuan, D. W. Heikkinen, K. A. Snover, F. Riess, and S. S. Hanna, Phys. Letters 25B, 217 (1967).

⁵R. Bloch, R. E. Pixley, and P. Truöl, Phys. Letters <u>25B</u>, 215 (1967).

⁶H. M. Kuan, F. Riess, K. A. Snover, D. W. Heikkinen, D. C. Healey, and S. S. Hanna, Bull. Am. Phys. Soc. 13, 884 (1968).

⁷R. L. McGrath, J. C. Hardy, and J. Cerny, Phys. Letters 27B, 443 (1968).

⁸M. Suffert, W. Feldman, J. Mahieux, and S. S. Hanna, Nucl. Instr. Methods 63, 1 (1968).

⁹A. Rytz, H. H. Staub, H. Winkler, and F. Zamboni, Nucl. Phys. 43, 229 (1963).

¹⁰Jerry B. Marion, Rev. Mod. Phys. 38, 660 (1966).