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We outline a dynamical scheme for studying Regge behavior of scattering amplitudes.
It is based on unitarity and the concept of short-range momentum-space correlations in
high-energy processes.

We describe here a type of integral equation that generalizes the 1962 model of Fubini and collabor-
ators (ABFST model) to more realistic multiperipheral mechanisms such as the multi-Regge mod-
el.2 The essential requirement is that interparticle correlations in the production amplitude should
involve a finite number of "links" in the multiperipheral "chain". We restrict ourselves, that is to
say, to a certain type of "short-range order" in momentum space, but the details of this order. . are
not crucial.

Virtues of the equation are these: (a) It operates entirely inside the physical region, both the kernel
and the inhomogeneous term being obtainable through analysis of actual reactions. (b) It is a dynami-
cal equation in the same sense as the Schrodinger equation, rather than a consistency condition im-
posed by analyticity. In fact, no reference is made to analyticity. (c) Regge poles are generated, and
the consistence of input and output poles provides a natural bootstrap mechanism. (d) The dynamical
relation of Regge cuts to poles is illuminated. Being an expression of unitarity, the equation includes
absorptive effects.

To illustrate the method, let us suppose that the most general reaction initiated by two spinless par-
ticles a and b is a+ b -a+ b+ (n spinless particles of mass p). If the initial and final momenta, as well
as a set of n+1 momenta transfers, are denoted as in Fig. 1, a simple multiperipheral model for the
production amplitude assigns to it the form

6 (p, p )G(p, p, p )G(p, p, p ) ~ ~ G (p,p, p )+exchange terms.

In a multi-Regge model with a single type of input trajectory and without dependence on 'vertex an-
gles", for example, we would have

2 Q' p

with nin the "input" trajectory and p the coupling constant for an internal vertex The facto. r G~(po, pl)
would be the coupling constant for the end vertex connecting particle a to the chain, while Gb would
have the form (2) but with the external coupling constant appropriate to particle b More c. omplicated
models might include several input trajectories and input cuts, different kinds of produced particles,
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FIG. 1. The process p +p&a 0 1 yg+ 1

Po Pb=-P
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dependence on vertex angles, etc. The associated correlation functions G would be more complicated
but each would depend on a finite number of "adjacent" variables in the multiperipheral sense.

Continuing with our simple example, let us denote the absorptive part of the elastic amplitude for
a+b-a'+b' by

Z & (P ', P, Pb', Pb),n a' a' b ' b'

where

n+1
A = fd'q ~ ~ .d4q 5(p +p —Q q )&+(q '-m ~)5+(q '-p, ') ~ ~ ~ 5+(q '-m ')

n 0 n+1 a b i=0 i 0 a 0 n+1 b

G,"(P ', P ')G, (P P )G*(p ', P ', P ')G(P , P ,P )" G *(P„',P„, ', P , ')

&&G (p,p, p )+exchange terms,
b n' n+1' n+2

with

P1-PO ~0 P2 -Pl -ql "
Pn+2 -Pn+1-qn+1

Here 6 denotes the positive-energy part of the delta function. If the coupling constant p(t , t +1) is.

small except for small values of t; and ti+1, the exchange terms tend to be small. %e shall here ig-
nore them completely, although exchange can be partially included by an appropriate complication of
the correlation function.

In the ABFST model |"(p; l,p;, p;+1) contains no correlation betweenp; 1 andp;+1 and in fact de-
pends only on p;2, being the elementary propagator for the line labeled by pi. A recursion relation
between An+1 and A„ is then immediate. To accommodate our more complicated correlation we must
back up one rung along the chain and undo the integration over q, in Formula (3). We thus define a new
function Bn from which An is obtained as follows:

A„(p, ', P, , pb', Pb) = fd'qo b'(qo'-m, ')G, *(p, ', P1')G,(p, ,pl+„(P ', P, qo, Pb', Pb), (4)

where pl =p -qO, pl'=p '-qO. The quantity B~ satisfies a recursion relation of the ABFST type,
namely

&„(Po',Po, qo,'Pb', Pb) = fd'ql ~'( ql'-u')&*( Po', Pl', P2') G( Po, Pl, P2)&„1(Pl', Pl, ql, Pb', Pb)

with P, =P, -q„P, '=P, '-q, . Summing Eq. (5) from n =1 to ~ and defining

B= QB)
n=o "'

we obtain the integral equation

Po 'Po' o'Pb 'Pb =
o Po 'Po'qo'P

+fd'ql &+( q'l-v')&*( po', Pl', P2')&( Po, Pl, P2)&( Pl', Plql, 'Pb', Pb),

where Bo corresponds to the two-particle unitarity contribution:

0 0 ' 0' 0' b ' b 0 b 0 b b 0 ' 0 0' b b 0' 0 0' b
*

The complete absorptive part is obtained through the linear operation (4), i.e. , integration over q„
performed on B rather than on Bn.

A more economical notation is achieved through the change of variables, po =I'0+ 2Q, po'=P0=2Q, p,
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+ —Q p i =P -2Q etc. , p]us pf =Pf -zQ, pf
' =Pf + z. The familiar invariant variables are then

s =s =(p +p ) =(p '+p ')'=(P +P ) .
0 0 b 0 b 0 b

s =(P +P )'=(p '+P ')'=(P +P )', etc. ,b 1 b 1 b

t ~"=(P sQ/2)2 t ' '=(P sQ/2)' etc.
0 0 ' 1 1 7

while the actual negative momentum transfer t is

t=(t -~ ')=(~ '-P )'=Q'.
a a b b

We may then rewrite our fundamental equation (6) as

B(P,P;P, Q) =B (P,P;P, Q)+ fd4P b ((P -P ) -2p )2B(P,P;P, Q)H(P, P, P;Q),

where

H(P ~P ~P 1 Q)= t*(P -'Q~P ~OP -'Q)G(P +'QiP +'Q~P +'Q) ~

More complicated correlations can be accommodated by undoing two or more integrations in defining
B. The kernel II would then depend on a correspondingly longer sequence of adjacent P's, but the form
of the integral equation would be similar.

Although the driving term B0 corresponds in the multi-Regge model to the well-known AFS cut in the
angular momentum plane (the A, formed from B, is precisely this cut), the iteration of BD through the
integral equation generates an infinite sequence of cuts that sums up to Regge poles. The underlying
basis for these poles is the same as in the ABFST model: invariance of the kernel H(P„Pi, P~; Q) un-
der the little group of fixed-Q simultaneous Lorentz transformations of P„P„and P, This in. variant
operation does not involve any transformation of Pb, and when s„s„and s2 are asymptotic the invari-
ance can be translated into the statement that the kernel depends only on the ratios s,/s, and s,/s„ to-
gether with t, t0'+', t, '+', and t, '+'. Using the same reasoning as ABSFT, one may then conclude
that if B is regarded as a function of the invariants s„s„ t, '~', and t, the solution of the homoge-
neous equation as s„s,-~ is of the form

B(so, si, to ti ' t) si b(&&0/si, to, ti ti ' t),
(+) (+) n(t) (+) (+) (~)

(lO)

where n(t) is the largest eigenvalue of the homogeneous equation. Forming A by integration then leads
to

A(, t (+).t), ( ) (t ( ). t)

the physical absorptive part to be obtained by setting t0 '~'=ma'.
Provided the eigenvalue equation for o has a solution, there is thus a coherence leading to Regge

poles in the infinite sum of cuts. The original AFS cut will not disappear but will be modified by the
equation. Symbolically, if the equation is written as B=B,+KB, the solution B=[1-K] B, contains
the cut both in Bo and in K, so there is a damping. Questions of this type we defer to a subsequent pa-
per.

In terms of invariants the asymptotic homogeneous equation becomes

B(s s &
&+&

&
'« &)=@& ' dt &+'d& & 'K m ~ t &&& t &&. "

&
&&&'

&)
cfs S S

0& 1S 0 r 1 j 0 S 2 0 1 2
1 1 1

where we have explicitly extracted a factor g0 to characterize the strength of an internal vertex. The
eigenvalue equation corresponding to (10) is

(&3)
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the range of t~' ' being restricted by

g(t t (+) t (-))—t2+ t (+&&&+ t (- &&& 2[tt (+) + tt (-) + t (+) t ( —) $ 02 P 2 2 2 2 2 2 2 j& ~

Now, for large s,/s, and small s,/s, =)(' the multi-Regge model has the kernel behavior

n t '+' +n. t '
s xn 1 ln 1 F(t (+& t (+& ~ t)

~ ~

~

Sj [ g(t t (+) t ( -) )]1/2

In the weak-coupling limit, we may employ this form throughout (13) and deduce

nin(t 1"')+nin(t I' ')
t (+)

g

1

w. ith

(i4)

P(t, '+', t)=, ', dt '+'dt '
&. & n(t) [n (t (+))+n (t (-)) 1] 2 2 [ ~(t t (+) t (-&)]&/2

in 1 in 1 2 & 2

Assuming F to be factorizable,

F(t (+) t (+) t) F (t (+) t)F (t (+) t)

we find the eigenvalue equation

"dt(+)dt(-) F (t(+) t)F (t(+) t)
[-h]" n(t) [n (t'+')+n (t' ') 1]'

ln in

The corresponding Chew-Pignotti model' may be obtained immediately by assuming n;„(t) to be in-
dependent of t, i.e. , nin(t+) -min Then.

n=2n. -1+g (t),in

where
' dt'+'dt'

We close with some comments on the possibility of a self-consistent weakly coupled Pomeranchuk
trajectory. If we write

n(t) = I -g,'X(t),

and set n;„(t) = n(t), then E(I. (18) becomes

dt'+'dt ' ' F (t +', t)F (t'+', t)
[-a]'" x(t'-')+x(t'-')-x(t)

(2i)

independent of g, . Assuming E(l. (22) to have a solution, it is tempting to infer a connection between

the two properties ~ =1 and n'=0, both properties following from the smallness of g,'. Unfortunately,
in a more realistic model, with additional input trajectories lying below the Pomeranchuk and strongly
coupled, such a simple inference may not be possible. The lower lying input trajectories may play an

important role in determining the properties of the output Pomeranchuk. The above example, none-
theless, illustrates the bootstrap potentialities of our equation.

*A preliminary version of this work was reported at the Vienna Conference on High Energy Physics by W. Frazer.
)Since this work was completed, we have received a preprint by I. G. Halliday and L. M. Saunders containing

very similar ideas.
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1545, and the U. S. Atomic Energy Commission.
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If SU(3) symmetry is assumed and singlet-octet mixing is neglected, (a) the gm decay
mode is forbidden for all negative CP states, (b) p~ cannot appear in decays where the
KI7 mode is absent, (c) the q~/XK branching ratio is the same for all isovector octet
bosons allowed to decay into pr. Violation of these predictions would suggest serious
re-examination of other SU(3) decay predictions. Prediction (b) seems to be violated by
preliminary data. If there are no violations, and q~ and p~ are both allowed, the only
possible classification for either A2 peak with 4&4 is 2+ .

The qm decay mode of the lower half of the
split A„ the A, (1270), should be suppressed if
it has J = 1 + as suggested by Ge11-Mann and

Zweig. An SU(3) selection rule' forbids the de-
cay into two octet pseudoscalar mesons for any
boson classified in an SU(3) multiplet whose neu-
tral nonstrange members are odd under CI'.
This selection rules applies to a I state but
not to a 2++ state. If the lower peak is I and
the upper is 2 +, as suggested by the Gell-Mann-
Zweig model, the qm- mode should be suppressed
in the lower peak relative to the upper peak.
This asymmetry does not seem to be observed
experimentally. '&4

Severe restrictions on the pm/KZ branching ra-
tio are predicted by SU(3) symmetry also for the
eases where these decays are allowed, if they is
assumed to be a pure octet state. The decays of
octets with even C and even I' are described by a
D-type coupling. All such decays are predicted
to have the same pm/KK branching ratio as the
2++ state. If C and P are both odd, the EE mode
is allowed (for the neutral case it is K,K,), but

qm and isovector pm are forbidden. There is no
case where qm is allowed and ~ is forbidden.

If a state is found which is observed to decay
into pm, but not into EE, something very peculiar

and very interesting may be happening. SU(3)
may be badly broken; then all previous analyses
of two-body decays using SU(3) are open to ques-
tion. The singlet component of the g may be dom-
inant; then all previous estimates of g decays
and decays into g's which do not take the singlet
j.nto account are suspect. There is also the pos-
sibility of peculiar interference and mixing ef-
fects which might be destructive for the EE mode
in a particular experiment, '

For an isovector state which decays into pv, C
is even, and the q v/KZ ratio is uniquely deter-
mined, if these decays are allowed at all. The
qm/KK ratio, obtained from SU(3), is equal to —',

multiplied by the appropriate phase-space fac-
tors. Thus any variation in this branching ratio
indicates either contamination by an additional
odd-C state which does not go into pw or one of
the peculiar effects mentioned above.

Preliminary experimental results indicate that
the qm decay is about equal in the two 4, peaks'
and is symmetric in the data, which do not resolve
the splitting. ' There are indications' of an asym-
metry in the AE decay and a possible absence in
the lower peak. Further experimental data on
the rim/KK branching ratio in the A, decay is
therefore of very great interest, both for charged
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