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Field-theoretic. model calculations for inelastic electron scattering shower that (1) scal-
ing law's must be weakly violated; (2) there is no evidence for OT/og =0 or 'o; and (3) the
angular spread in production amplitudes must increase as I Q I increases and is rough-
ly proportional to I Q I for large I Q I, where Q is the four-momentum of the virtual
photon. Some experimental tests are suggested.

Q'- -2EE'(1—cos8) (0.
Furthermore,

s=m '+2m v+Q,
P P

where m is the mass of the proton and v=E-E'.
P

Throughout this Letter, we shall assume s to be
large (a few BeV' or more), while the ratio -Q'/
2mpv may take on any value less than 1. This is
the deep inelastic region.

Let us begin with the simpleminded assumption
that I Q'I, when large as compared with the had-
ron masses, is the only important scale —i.e.,
the hadron masses can be set to zero. Under
this assumption, the total cross section is a
function of s and Q only. For dimensional rea-
sons, the general form for the total hadronic
cross sections of a virtual photon on a proton is

a.(s, Q ) -a.(s/I Q I )/I Q'I, (4)

where i = T, S refers to transverse and longitudi-
nal photons, respectively. Equation (4) leads di-
rectly to

(5)

We consider here the inelastic scattering of a
high-energy electron,

e +P -e +8,
where B is a hadron system with total mass v's.

We shall assume one-photon exchange —i.e., we
have in essence the scattering of a virtual photon
of four-momentum Q by a proton. Let us denote,
in the laboratory system, the initial and the final
energies of the electron by E and E', and the
scattering angle of the electron by 8. Then at
high energies

Ws v E2(s/IQ I),

where 8', and R', are the usual structure func-
tions for electroproduction.

Photoproduction corresponds to the special
case I

Q'I = 0. We learn from the experimental
data of DESY' and the Stanford Linear Accelera-
tor Center (SLAC)' that the total hadronic-photo-
production cross section is nearly a constant,
very roughly 100 p,b, at energies between 2 and
7.5 BeV. This property is not related to the
massless nature of the photon since we know
that mP and PP total cross sections are also near-
ly constant at high energies. Thus we expect, at
high energies, the total hadronic cross sections
of a virtual photon of fixed Q' on a proton to be
nearly constant. This means that for large s/

where a;(~) is a finite constant. From (7) we ob-
tain

+,(s/I Q'
I ) - const s/I O'I.

and

E,(s/I Q'I ) —const.

Equations (6) and (9) are in rough agreement with
the preliminary SLAC data, as reported by Pan-
ofsky. '

It is the purpose of this Letter to study the
simpleminded assumption about scales. Our
argument above shows that, in any model con-
structed for inelastic electron scattering, the
scaling laws like (4), (5), and (6) are always ob-
tained as long as the model has no divergent
quantities when the hadron masses are set to ze-
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FIG. l. Sixth-order diagrams for Compton scattering of a virtual photon.

ro. However, there is no reason to believe that
such is in fact the case. In particular, there is
no a priori basis to exclude logarithmic functions
like 1n(IQsI/As) or ln(s/Xs) from entering the ex-
pression for o;(s, Q'), where A is some hadron
mass. We have to turn to model calculations for
clues.

As emphasized above, the near constancy'~' of
the total hadronic-photoproduction cross section
at high energies is crucial for obtaining (7), (8),
and (9). Thu.". a relevant model calculation must
yield this constancy in a natural manner. Recent
studies in quantum electrodynamics show that,
to appropriate orders, Delbruck and Compton
scattering processes do have this property. We
therefore use the generalization of these consid-
erations in quantum electrodynamics to virtual
photons as a model for inelastic electron scatter-
ing. More precisely, we study the three Feyn-
man-Dyson diagrams in Fig. 1 by the method
previously given. ' We find that

simpleminded assumption about the scale cannot
be correct.

We note that the fermion mass m does not ap-
pear in (10) and (11). It is therefore perhaps not
unreasonable to take A. to be the p mass. If'

I Q'I
= 2.3 (BeV/c), ln(I Q'I/)P) is only about 1.4.
Thus we expect, at SLAC energies, to be able to
see experimentally violations of (6) and (9) by
measuring cross sections at larger I

Q'I. '
We conclude with a brief discussion of the an-

gular distribution of the outgoing hadrons. To be
specific, consider the electroproduction of p,

e +p-e +p+p . (12)

When the mass of the p-p' system is large, p' is
produced by the diffraction of the virtual photon.
In the limit of photoproduction (Q'=0), the angu-
lar distribution for p is found' to be approxi-
mately e, where t is the square of the momen-
tum transfer. This angular distribution is strong-
ly peaked in the forward direction. By the above
arguments, the angular distribution of p in the

and

+ kin(l q'I/~')+O(l)3,

~ (s 0') - 8/»'I O'I '[»(I O'I/~') -aI

(10)

for s»IQ'I »m', A', where m is the fermion
mass and A. is the mass of the exchanged vector
mesons. In (10), one of the two logarithmic fac-
tors can be suppressed by introducing an elec-
tromagnetic form factor for the fermion, but the
other logarithmic factor remains in general.
Calculation of Compton scattering in the second
order also shows that, in the limit I

Q'I -~, with

I Q'I/s held finite, logarithmic factors enter into
the expressions for OT and og. Thus our calcu-
lations show that no general principle exists to
exclude the logarithmic factors, and the above
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FIG. 2. Widening of angular distribution for the elec-
troproduotion of po. {The po distribution is assumed to
be of the form exp(B(Q2)tI .}
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P-p' system must be less strongly peaked if
~

Q2~

is larger. If we assume an exponential angular
distribution of the form exp[B(Q')t], B(Q') is a
decreasing function of

~
Q'~. A rough guess about

B(Q ) is shown in Fig. 2. In general, the diffi-
culty in making large transverse momentum
transfers' at high energies is much less in elec-
troproduction processes when the virtual photon
is far off' the mass shell. This point is verified
in the model calculation, and experimental con-
firmation of this point wi11 be of interest.

Details of the considerations in this Letter will
be submitted to The Physical Review shortly.

We are greatly indebted to Professor C. N.
Yang for numerous discussions on high-energy
processes. We also wish to thank Dr. Luke W.
Mo for an informative conversation on SLAC ex-
periments.
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It is shown that an infinite set of daughter trajectories is required to saturate finite-
energy sum rules consistently. In the presence of this infinite set, the sum rules by
themselves do not constrain the energy dependence of the trajectory function.

In a recent paper Mohapatra' has argued that,
contrary to usual assumptions, ~&~ Regge trajec-
tories are not linear functions of s, the square
of the energy. The Veneziano representation, 4

on the other hand, has such an assumption built
into it in a fundamental way. ' Mohapatra shows
that if finite-energy sum rules (FESR)' are to be
consistent with analyticity at t =0 and saturation
with a finite number of resonance trajectories,
the trajectory function a(s) must be proportional
to (s lns)"I. Kugler' has also presented argu-
ments for a square-root trajectory; he inter-
prets as resonances the loops in an Argand dia-
gram obtained from a partial-wave analysis of a
t-channel Regge pole.

In this note we show that the assumptions made
by Mohaptra lead to inconsistencies unless there
are an infinite number of daughter trajectories.
His results, as well as those of Kugler, can be
interpreted as showing that if the sum over all
daughter resonances is replaced by a finite set
of effective leading trajectories, these trajec-
tories must have the (s Ins}"I energy dependence.
Since these effective trajectories do not satisfy

the t dependence of the FESR, their usefulness
is questionable. In addition, we conclude that,
in the presence of an infinite set of daughter tra-
jectories, finite-energy sum rules by themselves
are insufficient to determine the dependence of
e(s) on s. Additional information such as pro-
vided by hypotheses like duality, linear trajec-
tories, absence of cuts and intersecting trajec-
tories, smoothness of appropriately parame-
trized residue functions, negligible background
integral, absence of ghosts, or maximal sim-
plicity of the resonance spectrum are needed to
obtain a unique solution.

We start with Eq. (5}of Mohapatra' which we
write in the form

where the presence of secondary terms on the
right of (I) is important. We have redefined I'J
to include several s-dependent factors and used


