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SCALING FORM OF THE SPIN-SPIN CORRELATION FUNCTION

OF THE THREE-DIMENSIONAL ISING FERROMAGNET ABOVE THE CURIE TEMPERATURE*
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(Received 28 April 1969)

The spin-spin correlation function for the & = g Ising ferromagnet is evaluated in zero
magnetic field and for & -T~ by the method of series expansions. Evidence is present-
ed showing that the scaling of correlations is valid in the (weak) limit ~ —~, xs fixed,
but is not valid in the (strong) limit Ka- 0, x&&a, with zx arbitrary.

In this Letter the range of validity of the scal-
ing form of the critical spin-spin correlation
function I'(r, T) of the three-dimensional S= ~ Is-
ing ferromagnet for T ~ Tc (the Curie tempera-
ture) and in zero magnetic field is discussed by
means of series expansions. According to the
scaling hypothesis, '~'

I'(r, T) =C(«a) (a/r)e (2)

is an accurate representation of the critical cor-
relations provided n'~0. 1.

Our high-temperature series expansions' pro-
vide all coefficients q„(r), n- 12, in the develop-
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I'(r, T) = (a/r) D(«r)

provided that r»a and za «1 but for arbitrary
values of the product n. In the above, a is the
nearest-neighbor lattice spacing, d is the dimen-
sionality, and « = «(T) = I/$(T} is the inverse co-
herence length, which, as T-Tc, becomes iso-
tropic and varies as' «(T) = «,e, where e = I Tc/-
T. We shall refer to (1) and the conditions which
follow it as "strong scaling. " Strong scaling
holds for the Ising model in two dimensions. As
reported in an earlier publication, ' we have ob-
tained the first 12 coefficients in the high-tem-
perature series expansion of I"(r, T) on the fcc,
bcc, and simple cubic lattices. We analyzed the
spherical moments of the correlation function,
evaluated v to be 0.638~0 ~", and g to be 0.041, ~3
(in contrast to the scaling-law predictions v

=0.625 and rl =0), and presented evidence that (1)
was at least valid in the limit «r fixed, r- ~ (we
will refer to this limit as "weak scaling' ), i.e. ,
that scaling holds provided distances are mea-
sured in units of the coherence length.

We shall present here the results of direct
analysis of the series of Ref. 5 for the fcc lattice.
Our conclusions are: (i) that there are probably
deviations from strong scaling for fixed r as aa
-0, (ii) that these deviations are numerically
small and will be difficult to detect experimental-
ly, and (iii) that the Ornstein-Zernike (OZ) form

ment

I'(r, T) = Q q (r)K,
n=o "

I'(r, T) = I' (r)-E(r)e
C

+higher powers of &, (4)

where I'c(r}-=I'(r, Tc}and a, the specific-heat
index, is equal to &in three dimensions. If this
is so, then one expects

S (r, T)- I'(r, T)+f (T)E(r),

where

Kc -=J/kBTc, and cn(A) is the coefficient of x in
(1-xp. A plot of SN vs fN then gives I'(r, T) as
intercept. Curvature can be taken into account
by means of a Neville table. ' Good convergence
mas obtained by this method for sites located
five or fewer steps from the origin. " Values of
e ranging from 10 to 0.08 mere used, but for
the more distant sites convergence was adequate
only for the larger values of &.

Figure 1 shows a plot of (r/a) I'(r, T)/(«r)
vs" ar for a variety of values of r and e. The
fact that points for different E all lie roughly on
the same curve is a direct if blunt test of (1).
Note that if, as is generally believed, s~' D(«r)
-const as ~r-0, then the curve is expected to
diverge at small «r like D(0)/(«r)". OZ theory

where K= J/kBT—. To evaluate F(r, T) for fixed r
and T we extrapolated the partial sums

N
S' (r, T)= Qq (—r)K .

nn=o

It is reasonable to expect' that for fixed r,
I'(r, T) carries the specific heat singularity as

Tc.
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FIG. 1. The scaling of F(r, T). Figure includes points for 10 4 ~e ~0.08 and 1 ~r/a ~5. According to (1) verti-
cal axis is 2&+~D(Kr)/(Kr) t. OZ plots as a straight line of slope -1, the continuation of which is drawn in on the
inset.

would yield a straight line in Fig. 1; so the dis-
tinct turn-up for a~ 0.1 is evidence that q&0.
All points in Fig. 1 include generous error bars,
but in many cases the errors were too small to
show up on the scale of the figure. The scatter
of the points can be attributed to spherical asym-
metry (lattice effects) at short distances, i.e. ,
to violations of the condition r»a. The discrep-
ancy is largest (6% at e =0) for the next-nearest-
neighbor site, of the order of 1% for the seven
next-nearest sites, and less than 1% for the fur-
ther sites, provided that a' is kept less than 0.1.
For larger e, the coherence length becomes com-
parable with a lattice spacing, and big departures
from spherical symmetry appear. None of the
scatter can be attributed to departures from
strong scaling, which, as we shall now see, are
too small to be observed directly.

To make departures from strong scaling appar-
ent, we focus on the behavior of I'(r, T) for fixed
x as e-0. Strong scaling requires that the coef-
ficient of the energy-density singularity, E(r) in
(4), should behave for r»a as"

Icn(-a) I(1-a). A plot of lnE(r) vs ln(r/a ) should
give a straight line of slope g. Figure 2 shows
such a plot for the fcc lattice for those sites for
which reasonably accurate estimates of E(r)
were possible. Estimates of E(r) are very sensi-
tive to the value of n, but there seems little rea-
son to doubt that n is exactly &. Our evaluation
of g is open to the criticism that, even for the
largest value of r used [the site (3, 3, 2)], the re-
gion (r»a) to which (6) applies may not have
been reached. ln defense, we note that E(r) can
be calculated exactly for the two-dimensional Is-
ing model, ~ and it is possible to extract from its
value at the nearby sites a value of g= 4 in agree-
ment with the exact asymptotic (r»a) calcula-
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C

E(r) =B(r/a), g= (1-c.)/v-2+2-rl
= 0.33~ 0.01. (6) O.c)

Note that weak scaling, which fixes ~r, makes no
prediction for g. Numerical determination of g
(see below) gives g = 0.47+ 0.06 in violation of
strong scaling. E(r) was determined by extrapo-
lating successive estimates for E(r), nqn+rKcn/
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FIG. 2. Plot of inE(r) vs ln(r/a). The slope deter-
mines g= 0 47 + 0 06

1.4
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tion. "
The constant 8 in (6) can be evaluated from the

vertical intercept of Fig. 2, yielding 8 =2.1+0.1.
Recalling D(0) =0.246+ 0.003,~~' it is easy to see
that, in the region (small e) where the expansion
(4) holds, the second term is never more than a
few percent of the first for the values of r for
which we have reliable information. Thus, any
departure from the strong-scaling prediction for
the form of the second term will be difficult to
see directly in Fig. 1. However, by taking the
derivative of I'(r, T) with respect to K, the first
term in (4) is removed, and the failure of strong
scaling becomes easy to detect. In Fig. 3 we
have plotted the quantity

n/v -1/v B(r/a) F(r, T)
0 B(K/K )

C

vs Kr for a variety of representative sites. KOQ

=2.30+ 0.03." If strong scaling holds, then this
quantity is equivalent by (1) to (~r) -/ dD(~r)/
d[(&&) ] and the curves for different lattice1 v

sites must coincide, apart from small fluctua-
tions due to departures from spherical symme-
try, etc. It can be seen that there is a systemat-
ic departure from strong scaling in the region Kr
&0.8 which disappears for larger values of n.
BI'(r, T)/BK was calculated in analogy to (5) by
extrapolating the partial sums

N

Q nq (r)K
n=0

against the quantity

N n—Z c (--', )(K/K ) .
n ' c

The nonscaling terms for which we have argued
appear in any case to be small. They will be dif-
ficult to detect experimentally. ' It is tempting to
speculate that the breakdown of strong scaling
and the failure of the scaling law 3v=2-n are re-
lated. Such deviations from "ideal" behavior may
be connected with the existence of a "second
length. "" We have been unable to find an unam-
biguous way of extracting such a length from the
series data.

%e are indebted to Professor L. P. Kadanoff
for discussions of these results.
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FIG. 3. Systematic deviations from scaling. According to (1) the vertical axis is -(~r) ~/ "dD(vr)/[(Kr)1~~l, and
all points should lie on a single curve. Maximum error bars for different values of &r are indicated.
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The reflectance of EuO from above the Curie point at 69'K down to 1.5'K shows split-
tings in the two main peaks near 1.5 and 4.7 eV. The first peak is a polarization-depen-
dent triplet at 1.5'K and a doublet at 70'K. The data suggest that the 1.5-eV peak is as-
sociated with the absorption edge and arises from the transition 4f~( S»2)-4f (~EJ/5d-
(t~). The narrow t2 sub-band is exchange split by 0.25 eV at low temperatures.

Previous optical studies of the magnetic semi-
conductors, EuO and other europium chalcogen-
ides, have shown unusually large magneto-opti-
cal effects' and an anomalous red shift of the ab-
sorption edge upon cooling through the Curie
point. ' These effects have been ascribed to tran-
sitions from the localized europium 4f electron
states to 5d energy states. ' We have further ex-
amined the effects of magnetic ordering on the
band structure by optical reflection studies of
EuO beyond the absorption edge in two sets of
experiments: (1) measurement of the reflectance
from 0.6 to 5.2 eV at several temperatures
through the Curie point, T~ = 69 K, down to 1.5 K
and (2) examination of the first peak in the reflec-
tance with circularly polarized light and in a
magnetic field at 70 and 1.5 K. We believe the
splittings of the ref lectivity peak observed in
these measurements indicate that the transitions
are to conduction-band states which spin split at
low temperatures. To our knowledge, this is the
first time such structure has been seen by direct

reflectance measurements through the Curie
point in any ferromagnetic material.

In the first set of experiments no polarized
light or magnetic field was used. The results of
these measurements appear in Fig 1 Ey cen-
tered at 1.44 eV at 80'K is the lowest energy
structure near the absorption edge at 1.2 eV. '~' '
E, is centered at 4.65 eV at 80 K.

As the temperature is lowered through T~ sev-
eral striking features appear in the spectrum.

(1) F. , appears to narrow slightly with decreas-
ing temperature above T~ but for T & T~, E,
broadens and a second peak E,' splits off to low-
er energy. As noted later in our magneto-opti-
cal measurements, there is a third peak E,"
splitting off to higher energies, not resolved in
Fig. 1 (see Fig. 2), which also contributeq to the
broadening.

(2) E, has a red shift upon cooling similar to
that of the absorption edge. ' However, the peak
shift is not as great as that of the edge, the peak
shifting about 0.2 eV and the edge about 0.3 eV
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