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The effects of thermal fluctuations on the dc Josephson effect in a junction of small ca-
pacitance are calculated using an analogy with the Brownian motion of a particle in a
field of force. The results are presented in a form suitable for comparison with experi-

ment.

At temperatures sufficiently close to the transi-
tion temperature, thermal fluctuations can dis-
rupt the coupling of the phases of the order pa-
rameters of two superconductors separated by a
thin insulating barrier. The dc Josephson' cur-
rent thereby acquires a noise voltage with a non-
zero average value. A simple kinetic theory of
the mean voltage has recently been given by Ivan-
chenko and Zil’berman.? In this note we examine
the problem in a slightly more detailed way, ob-
taining, for physical reasons discussed below,
results that differ somewhat from those of Ref.

2. The problem is of current experimental inter-
est, and a detailed comparison with experiment
is in progress,® with satisfactory preliminary re-
sults.

Consider a Josephson junction in series with a
large external resistance and battery, so that the
junction is essentially being driven by a constant-
current source. The equations of motion are
then

de/dt=2eV /h, (1)
CdV /dt =I-I,(T) sind-V /R + L(t). (2)

Equation (1) is the Josephson condition relating
0, the difference in the phases of the order pa-
rameter on opposite sides of the junction, and V,
the potential difference. We assume that the
area of the junction is sufficiently small so that
in the absence of external magnetic fields the
current is uniformly distributed over the area.
Equation (2) expresses the condition of conserva-
tion of charge: C is the capacitance of the junc-
tion; I,(T) is the maximum Josephson current at
temperature 7 in the absence of noise?; R is the
resistance of the junction, in general a function
of 6 and V, which for temperatures near the
transition temperature, may be approximated by
the (constant) resistance in the normal state®;
and L(t) is a fluctuating noise current. For eV
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<T, to which region we restrict ourselves, the
noise is thermal,® so that (L(¢ +7)L(t))=2R—'T
x8(7). The problem now has three dimension-
less parameters: y =kl (T)/eT, x=1/I,(T), and
Q =RC(2el,/k C)''%. This last quantity is the pro-
duct of the circuit time constant RC=7"" and the
Josephson plasma frequency wy.”

Equations (1) and (2) are illuminated by a
mechanical analogy. We rewrite these equations
in the form

9.=p/M, (3)

p=dU/do-np-L(¢), (4)

where p=(iC/2e)V, M =(k/2e)*C, L=(k/2e)L,

and U =-3yT(x6 +cosf ). The problem is thus en-
tirely equivalent to the Brownian motion of a par-
ticle of mass M in the potential U. To describe
this motion we form a Fokker-Planck equation®
for the distribution function P(8, p; t):

8P _dU P p oP na[p

at 096 9p M 86 ap ap

We restrict ourselves first to the experimental-
ly interesting case® where the damping rate 7 is
large. (A fuller discussion of this condition will
be given below.) One may then use the method
of Kramers® to reduce Eq. (5) to the Smoluchow-
ski equation for a distribution function o(6, ¢) in
the coordinate space alone:

a0 1 aU oo dqw
at nMae[( >°+Tae]'—5§_ ©)

We only need to consider the value of § modulo

2m, so we may restrict 6 to the interval 0 <6< 27,

and adjoin periodic boundary conditions to Eq. (6).
The steady-state solution of Eq. (6) must have

w constant. Furthermore, if ¢ is normalized to

unity, then w~! is the average time it takes for

a “particle” to diffuse one periodicity length,

+M T——] (5)
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e., the average time for a phase slippage of 2r. Thus the mean voltage is given according to (1) by

2eV /i = 2nw. (7
The required solution of Eq. (6) is
_wnpM __ £(8) 9 de’ 2 dg-
0= rham| O 767 anf " 55 ®

where f(6) = exp[ U(8)/T). The normalization of ¢ then requires that

v 1‘; 4;'{(e””-1)'1[ OZ"def(e)]U de'f(e,)} jzﬂde X d6'f((:,))} . 9)

The curves plotted in Fig. 1 are obtained from a numerical integration of this formula. Analytic
forms can be obtained in several limits:

v=x, y=-0; (10a)
=(x2-1)1/2, Y= ®,x> 1;
=0, y=o,x<1; (10Db)
=2(1-x2)*2 exp{~yl(1-x?)"/2 +x sin—'x ]} sinhimyx, y large,x<1. (10¢)
Furthermore, ,
R - origin. In the limit of large y and small x, one
lim ==11,(z)]7%, 10d ,
x =0 [ °(§Y)] (10d) can think of the phase slippage process as corre-
sponding to thermal activation over a high ener-
where I is the modified Bessel function. gy barrier. The barriers of Ref, 2 and this work
To compare our work with that of Ref. 2, we are identical. In Ref. 2 an attempt frequency w J/
remark that the result of the latter work corre- 2m is introduced as an ad hoc assumption. Our
sponds to dividing the right-hand side of our Eq. calculation, while not restricted to the region of

(10c) by ©. The difference has a simple physical high barriers, contains in this limit the prefac-
tor shown by Kramers® to be appropriate to the
overdamped case, i.e., an attempt frequency
ws?/(21m) =Qwy/21, for x <1, (The results of
Ref 2 are probably correct for the case of small
damping, provided the temperature and the value
of x are sufficiently small relative to the damp-
ing.)

The conditions for validity of the Smoluchowski
equation (6) are that the mean drift velocity of
the particle be everywhere less than the thermal
velocity T'/2M—1/2 and that the mean free path
T'2M~'/%)~! be small compared with the scale
of variation in 6 of the potential U. These condi-
tions are perfectly satisfied in the limit of strong
damping, £ -0. For § small but nonzero, the
voltage will generally be somewhat higher than
G the result predicted by the Smoluchowski equa-
tion, particularly in the region x 1.

For the case of 2>1, it becomes necessary to

N

x=I/1,
v=VWIR
y=1h/ekT

x — Current (reduced units)

) 2 3 study the full Fokker-Planck equation (5). We
v - Voltage (reduced units) hope to deal with this case in a future paper.

FIG. 1. Current-voltage characteristic of Josephson Current-voltage curves for the Josephson junc-
junction, including average noise voltage, based on Eq. tion in the absence of noise (y -~ ) have been dis-
(9). The inset contains an expanded version of the re- cussed by McCumber and by Stewart,® as a func-
gion 0<x<1, O<v<1, tion of . An important qualitative feature of the
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curves for large £, which must persist to some

extent when noise is included, is the occurrence
of a sharp rise in voltage (“instability”) at a val-
ue of x considerably smaller than unity.

It should be noted that the parameter Q is in-
dependent of the area of the junction, depending
only on the thickness of the junction, the temper-
ature, and the materials involved. The parame-
ter y, by contrast, is proportional to the area of
the junction.
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Quantized magnetic flux trapped in hollow superconducting lead cylinders of extremely
small dimensions (0.6 u i.d., film thickness <0.5 u, length 100 ) was observed in an
electron interferometer. The flux was found to be quantized in integer multiples of & /2e
+4%. No influence of the size of the tube upon the fluxoid quantum has been observed.

If a superconducting hollow cylinder is cooled
below the transition temperature in the presence
of an axial magnetic field, magnetic flux is
trapped in the cylinder after switching off the ex-
ternal field. This flux is quantized,! and past ex-
periments®~* yielded the flux quantum to be &,
=h/2 =2.07x10"7 G cm?® with an accuracy of
about 20%. Bardeen® predicted a decrease of the
flux nh/2e (n =integer), which is trapped in the
bore, for tubes of very small inside diameter
and with wall thickness of the order of the pene-
tration depth (A\pp=~500 A). The cylinders used
in the experiments,?® however, consisted of
more than 0.5-pu-thick lead or tin films on wires
with diameters of 10-20 p; their length varied
between 0.6 and 9 mm. Therefore the two follow-
ing questions arise: (1) Are there still principle
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deviations from the value %/2¢ for one fluxoid
quantum available which can be observed with a
new highly sensitive measuring method? (2) Is
the fluxoid quantum affected by the geometry ?
An experimental answer seemed to be possible
with the aid of an electron interferometer, which
essentially consists of an electrostatic biprism.

The biprism splits the impinging coherent beam
into two electron waves, which superimpose be-
hind the biprism giving a Fresnel diffraction pat-
tern. If the two interfering electron beams en-
close a superconducting hollow cylinder with
trapped magnetic flux, a phase shift Ap =e®/#
occurs between both waves®s” altering the inter-
ference figure in a characteristic way.

Taking account of the magnetic phase shift the
intensity distribution of the interference pattern



