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EVIDENCE FOR A "RADIATIVE AUGER EFFECT" IN X-RAY PHOTON EMISSION
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A broad x-ray emission structure with several maxima has been found on the low-en-
ergy side of the Ko. ~0. 2 line in Mg, Al, Si, and S. It is interpreted as a radiative K L
transition resulting in the simultaneous emission of a photon and an L-shell electron.

Usually an x ray i-nner-hole state decays either = 10.648 A), and that from Si and S with an ethyl-
through a radiative or a nonradiative transition. ene diamine tartrate crystal (2d = 8.808 A). In
Ho~ever, other decay modes are possible. the cases of Al, Si, and S the spectra were also
Bloch' suggested that an atom may be able to obtained with the potassium acid phthalate crys-
emit an x-ray photon and a valence-shell elec- tal in order to make sure that there were no ex-
tron simultaneously instead of undergoing a "for- tra reflections involved due to the analyzing crys-
bidden" quadrupole transition. Here we report tal. ' As an example of the new structure we
observation of yet another possible decay mode, show in Fig. 1 records of the low-energy side of
one in which a photon and an inner L-shell elec- the S Ke line. The energies of the peaks labeled
tron are emitted simultaneously instead of the di- E'g E2 A B C and D were determined rela-
pole allowed Ka line. Following Bloch we call tive to the energy of the Ka line from at least
this the "radiative Auger effect, " but we might al- three independent measurements. The energy
so eall it the "atomic internal Compton effect" of the Ke line was taken from the table of Bear-
from its analogy to nuclear y emissions involving
the simultaneous ejection of an atomic electron. ' The measured peak energies are given in Ta-

In the course of our search' for a many-body ble I, where we have also compared the energies
structure situated on the low-energy tail of the of the maxima A, 8, C, and D with the known
Ka line in Al metal we extended our measure- KLL Auger electron energies of the elements. '
ments to energies below the expected range for The energies of the peaks agree closely with the
the many-body effects. Here we found a broad known Auger energies corresponding to various
structure with several "bumps, " the intensity of terms of the final state in the intermediate cou-
the highest peak being about 0.05% of the intensi- pling. Note also that the peaks at A, B, C, and
ty of the Kn line. A similar structure has also D have greater hah&-widths than the Ke peak.
been found in compounds, but here we limit our All this is consistent with the following interpre-
discussion to measurements on the elements in- tation: Instead of the initial K hole being filled
vestigated so far, namely, Mg, Al, Si, and S. with emission of either a full-energy Ka photon

The plane-crystal spectrometer equipment or a full-energy Auger electron, there is a si-
used has been described previously4 with the ex- multaneous emission of a lower energy photon
ception of a new vacuum chamber which allows hv and excitation of an L-shell electron. In Fig.
an improved angular resolution. The specimens l(b) the peaks E, and E, correspond to transi-
were excited by the radiation from a chromium- tions in which the L-shell electron has been ex-
anode x-ray tube. The fluorescent radiation cited into bound states whereas each of A, B, C,
from Mg was recorded with a potassium acid and D represents the approximate beginning of a
phthalate crystal (2d= 26.64 A), that from Al with continuous band of x-ray energies. Within each
an ammonium dihydrogen phosphate crystal (2d of these bands the energy I~ of the photon satis-

1346



VOLUME 22, NUMBER 25 PHYSICAL REVIEW LETTERS 23 JUN@ 1969

1 Kc~. cx

(o)

&/2000 x (COUNTS PER

0,1MIN AND 0,02 STEP)
CL
UJ
I—

C)

Cl

2400 2350 2300
I I

2250 2200
I

2150

ff)I—

C)

C D
~ ~

~ ~ 'e

(b)

~ ~

0 I I

2150 2100
1 L

2050 2000
ENERGY (ev)

I

'l950

FIG. 1. The low-energy side of the S Ko. io.'2 line. {a) Two unidentified peaks. {b) The peaks identified in this
Letter. The spectra shown in {a) and {b) were recorded from separate samples, the counting rates being slightly
different in the region of overlap.

fies the energy-conservation relation

Rtc+E . (L) =E(KLL),
kin

where Ekm(L) is the kinetic energy of the eject-
ed L electron and E(KLL) is the full Auger elec-

tron energy. As Ekin(L) varies from zero to
E(KLL) we get a continuous band of photon ener-
gies extending from an edge at k&u=E(KLL)
toward lower energies. The different bands cor-
respond to different energy terms of the final,
doubly ionized atom, each band consisting of a

Table I. Exciton and Auger energies for the K L transition in some elements. The energies &~, &2, A, B, C,
and D are from this work and the "ESCA" energies from Ref. 7. "ESCA" denotes electron spectroscopy for chemi-
cal analysis.

Element

Exciton energy
{eV)Ea Eab

i 2 ESCA

28'2P4

B
iS

Auger energy
{eV)

ESCA

3p

ESCA

2s2P'

Dc
P

ESCA

Mg
Al
Si
S

1395 ~1
1620 ~1
2121 +1

1614+1
2114 ~1

1182 +2
1389 +2
1607 +3
2106+2

1179 1172
1387 1381+ 2 1379
1611 1596 +4 1602
2107 2096 +4 2096

1150 +3
1354

1573 +3 1574
2056 +5 2058

1128+5

1554 ~2
2037 +2

1135
1336
1554
2034

The spectrum of Mg has been recorded with a rather low resolution. Hence only one broad peak with the maxi-
mum denoted by A has been found.

In the spectrum of Al the exciton peak E2 and the maximum A do not appear separately.
In the spectrum of Al a broad peak situated between about 1370 eV and 1330 eV has been found but it is over-

lapped by the Cr Ku line in the fourth order.
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In+ E . (L) = Ru(Ka)-E(L) & E(KLL).
kin

(2)

Here h&u(Kn) is the energy of a Ko. photon and
E(L) is the binding energy of an L electron. It
should also be noted that the ordinary Raman ef-
fect produces a singly ionized atom whereas the
radiative Auger effect produces a doubly ionized
atom; so the multiplet structures are different in

continuum of photon energies beginning at an

edge that corresponds to an energy term.
The maximum at A correspons to the strongest

line Is('S»,)- 2s'2p~('D, ) in the Auger spectrum.
The ratio of the integrated intensity of the whole
K- L' spectrum to that of the Ka line decreases
slightly when the atomic number Z increases
from 12 to 16, the average value being 0.007.
The observed decrease is obviously a conse-
quence of the decrease in the Auger electron
yield with increasing Z. In view of the high Au-

ger yield in this region of Z values the K- L'
structure should be detectable for Z values high-
er than 16. Related structures may also be
found in other regions of the x-ray spectrum.
Thus, Cady and Tomboulian' supposed that the
low-energy tail of the L-emission bands in Na,

Mg, and Al is due to a radiative Auger effect.
Some low-energy satellite lines of the Ke and

KP lines for elements in the range of Z from 33
to 44 observed by Hulubei' and Hulubei, Cau-
chois, and Manescu" were interpreted as K
—LM and K-M transitions, but it is not clear
whether these satellites show any bandlike struc-
ture.

The shape of the x-ray bands observed by the
authors is similar to the shape of the x-ray Ra-
man bands found by Suzuki" to result from the in-
elastic scattering of x rays by K electrons in

light elements. The analogy between Suzuki's re-
sults and ours is clear if we imagine our radia-
tive K- L' Auger effect to be an internal Raman
or modified Compton effect where the photon
which is inelastically scattered by an L electron
is created within the scattering atom itself. This
latter scattering can be distinguished from the
kind observed by Suzuki, which, in our experi-
ment, would be the ordinary Raman scattering of
a Ka photon emitted from one atom by another at-
om. In ordinary Raman scattering energy con-
servation requires that the energy of the scat-
tered photon 5+ satisfy, instead of (1), the rela-
tion

the two effects. Actually, according to Ep. (2)
the peak denoted by A' in Fig. 1(b) may corre-
spond to S Ka rays inelastically scattered by

L~ III electrons. We have also found evidence
in our spectra for some other faint peaks on the
high-energy side of the K-L' band as shown in

Fig. 1(a) but neither of the energy relations (1)
and (2) fits these peaks.

The shape of the K- L' band also closely re-
sembles the shape of the energy spectrum for L
shake-off electrons ejected from neon during the
K photoionization as observed by Krause, Carl-
son, and Dismukes. " The cross sections for
both processes depend upon the behavior of the
continuum wave function near the threshold for
the ionization of the L electrons. However, the
shake-Off cross section is determined by a mono-
pole matrix element whereas the radiative Auger
cross section is determined in second order by
a dipole matrix element. No complete theory of
the radiative Auger effect exists but we are cur-
rently working on it.
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