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A new type of continuous-moment sum rule is proposed. It retains the flexibility of the
the usual continuous-moment sum rule but avoids ReF in the low-energy integration.
Also, it exploits the low- and intermediate-energy data more efficiently than was possi-
ble previously. We apply it to the forward pion-nucleon charge-exchange scattering to
obtain n& = 0.659+ 0.02 and y& =0.0173+0.001.

It was first pointed out by Igi and Matsuda, '
and independently by Logunov, Soloviev, and
Tavkhelidze, ~ that from analyticity and Regge
asymptotic behavior alone it is possible to obtain
information on the Regge parameters from low-
energy data. As an example, they considered
pion-nucleon charge exchange in the forward di-
rection and obtained a relation between the two
forward Regge p-exchange parameters, ep and

y& (the intercept and residue, respectively). In
order to determine these two parameters inde-
pendently, their sum rule was generalized by
Dolen, Horn, and Schmid3 and independently by
Olsson in two directions.

Dolen, Horn, and Schmid considered the high-
er-moment finite-energy sum rules (FESR).
They observed that if ImF(v) satisfies an Igi-
type sum rule, v"ImF(v) will satisfy it equally
well. Using different moments n =0, 2, ~ ~, they
were able to determine o.p and yp separately.

Olsson engaged a different sum rule, the con-
tinuous-moment sum rule (CMSR) derived from
the original Gilbert dispersion relation. ' In his
sum rule, he converted the integrand ImF(v) in
the finite-energy integration into a mixture of
ReF(v) and ImF(v). In principle these two dif-
ferent sum rules are as valid as the original one
of Igi, but in practice both are subject to large
experimental uncertainties. In one case the in-
tegrals in the higher-moment sum rule are de-
termined almost entirely by the behavior of the
function immediately below the value of the upper
limit in the integration. In the other case, one

F(v)=F (v) for vo v,
Regge

=P (tan-,'mo. +i)y (v) ~.
We consider the integration

F(v) F (v)
Regge
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along I', where I' is the contour shown in Fig. 1
and P is any real number, P & l. The integration
along the semicircle can be ignored because F(v)
=FRegge(v) for v~ v. We are left with

has to know both the ReF(v) and ImF(v) in the en-
tire range of integration. As usual, ReF(v) is
less known and often subject to large uncertain-
ties. Furthermore, since ReF is usually calcu-
lated from the ordinary dispersion relation, high-
energy information invariably creeps in through
the infinite integral. Consequently, such a de-
termination of the Regge parameters is not a
bona-fide low-energy determination. '

In this note we propose a new type of CMSR
which avoids both above-mentioned difficulties.
We shall present the sum rule and discuss its
merits, and then apply it to a special case, the
pion-nucleon charge exchange in the forward di-
rection for determining the p Regge parameters.

Consider any real analytic function F(v) which
is odd in v and has the Regge asymptotic behav-
ior

f
v F(v+ iE') ~ z . v (v+ gE)

-2 2 p
dv tan —,'me. + i~'

2 2-v(v -v) jj--22-v(v -v )

or

t v ImF(v) —y, I 2p (I+o',.
dv =) —(v) ' &I,I PI, -

J~ (v -v ) &. 2 ( 2 )
1228



VOLUME 22, NUMBER 22 PHYSICAL RKVIKW LKTTKRS 2 JUNE 1969

where B((1+ed)/2, 1-p) is the Euler B function. For p=0 this reduces to Igi's sum rule; for p=-l,
-2, ~ ~ ~, it is a linear combination of the Dolen, Horn, and Schmid higher moment FESR s. It is seen
easily here that the integration in the left-hand side of Eq. (2) avoids both difficulties we have just
mentioned. The reason we are able to avoid an integration involving ReF(v) in the left-hand side of
Eq. (2) is by the adroit choice of the modifying function I/(v -v2)1 which has cuts only from -~ to
-v and +@ to +~. Such a cut structure will change the discontinuity of F(v) from ImF(v) to coswPImF(v)
+sinwPReF(v) only for v~ v, Thus we, too, have both ReF(v) and ImF(v) in our formalism; however,
since ReF(v) occurs only beyond v~ v, it is computable in terms of the Regge parameters.

Equation (2) can be used to determine the Regge parameters accurately by fitting the numerical val-
ues of the left-hand side computed from experimental data. As an example, we consider the case
where F(v) is the pion-nucleon charge-exchange forward-scattering amplitude. ' We use the normaliza-
tion

ImF(v) = ——[o (v) (r +-(v)],k 1
47t 2 m P m+p

where k and v are the laboratory momentum and energy, respectively. Equation (2) gives

2
nÃ 8
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where vB =-I/2M. (We use natural units 8'=c
= p =1.) In Eq. (3), if the right-hand side is sat-
urated by a single p Regge trajectory, o.

&
and y&

are just the p Regge intercept and residue, re-
spectively, with their normalization given in
Eq. (1).

We choose v=6.05 BeV/c. The left-hand side
of Eq. (3) can be accurately computed from the
low- and intermediate-energy data. ' In order to
minimize the systematic error in our numerical
integration we limit our parameters P to the
range -1 - P - 0.5, and a change of variable k
=k sin8 makes the integrand finite everywhere
and the integration much easier to handle.

The 76 integrated values Ip are shown in Fig.
2. The errors on fp are those due to the uncer-

! tainties in the pion-nucleon coupling constant
and the experimental pion-nucleon total cross
sections. We note here that because of the high
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FIG. 1. Finite contour in the upper-half v plane.

FIG. 2. Plot of Ip in natural units versus P; only
alternate points are displayed to avoid overlapping.
The solid curve is that calculated from the right-hand
side of Eq. (3) with the parameters given in Eq. (4).
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accuracy in the input data, the errors on Ip are
very small ranging from 1 to 3% only. ' We then

made a search program to fit these 76 values Ip
in the form of the right-hand side of Eq. (3) in
terms of two parameters n& and y&. Our best
values for e& and y& are

e =0.659 + 0.02,
P

2.0'

y =0.0173+0.001,
P

(4) I.5-

=0.654+0.02,
P

y = 0.0176+ 0.001,
P

corresponding to a y~ =42.9 for 84 data points.
In conclusion, it is clear that our modified

corresponding to a y~ =33.3. The curve shown in
Fig. 2 is that calculated from the right-hand side
of Eq. (3) with these values. It gives an excel-
lent fit, taking into consideration the very small
statistical errors on Ip.

We also looked for a four-parameter fit cor-
responding to p and IG' exchanges. We found that
the y2 value did not reduce significantly. The
value y& we found is at least one to two orders
of magnitude smaller than y&. We conclude that
if p' exists, it does not contribute significantly
to the pion-nucleon charge exchange, at least in
the forward direction.

The value e& =0.659+0.02 we obtain here is
higher than those from previous analyses, but is
not in contradiction with them. Our result is, in
fact, in closer agreement with that determined
by Foley et al. ' which is very accurate. They
parametrized the high-energy o~-p, -o'~+p total
cross section in the form B/Pc, where P(=k in
our notation) is the laboratory pion momentum.
Their best fit is B= 3.85+0.56 and c = 0.31+0.06,
corresponding to y=0.0142 +0.0021 and o. =0.69
+0.06 in our notation. In order to see how well
our values fit the high-energy cross section da-
ta, we present in Fig. 3 the experimental v~-p,
-a~+p total cross sections, our predictions, and
the empirical fit by Foley et al. Using our val-
ues, Eq. (4), we obtain y' = 11.3 for a total of
eight data points; the empirical fit by Foley et
al. gives y' =4.5, while Olsson's value4 gives y'
=22.0. Thus, not only is our method for deter-
mining the Regge parameters superior to those
used in previous FESR analyses, our values
also fit the high-energy data better. Finally, we
made a search program for e& and y& constrained
to fit the I6 values Ip and the eight high-energy
total cross sections simultaneously. The best
values we obtained are
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FIG. 3. ~ p-o + in mb vs k in Geg/c. The solid
curve is plotted using our Regge parameters Eq. (4).
The dashed curve is plotted using the parametrization
due to Foley et al. The dash-dotted curve represents
Olsson's parametrization.

CMSR is a powerful tool for the analysis of low-
energy data as it has the following advantages:
(1) It avoids large uncertainties associated with
ReF. (2) It is a bona-fide low-energy determina-
tion of Regge parameters as opposed to the usual
CMSR determinations wherein high-energy in-
formation invariably creeps in through ReE
which is calculated from ordinary dispersion re-
lations. (3) Our formalism utilizes the low- and
intermediate-energy data more efficiently be-
cause it favors higher moments.

The authors would like to express their grati-
tude to Professor R. H. Capps for valuable dis-
cussions.
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