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A new approach to equations of motion in general relativity is presented, in which mat-
ter is treated as singularities, of a particular kind, in the Weyl tensor. The motion of
these singularities is defined in terms of their own surrounding space. The equations of
motion then follow uniquely from the Einstein field equations. A concomitant result is
the existence of internal structure for the singularities and equations of motion for this

structure.

The purpose of this note is to point out what
appears to us to be a totally new approach to
equations of motion in general relativity, and to
report on some unusual results that arise from
this work.

The point of view which is adopted here is that
matter is to be represented by singularities in
the field, the field being represented by the Weyl
tensor; i.e., it is a generalization of the Lorentz
viewpoint to general relativity. The problem is
then to give a rigorous definition of the motion of
the singularity, intrinsic to its own space-time,
with no reference to a background space.

The main tool for our analysis is the structure
of the light cone in the neighborhood of the singu-
larity. We thus first consider a family of null
surfaces, each labeled by « =const, with an af-
fine parameter » measuring “distance” on each
null geodesic and two “angular” coordinates x1
labeling the geodesics. We then impose a re-
strictive condition which makes each of these
surfaces behave like a null cone (it also fixes the
origin for 7), namely

= Lliow),

and
o= (complex shear)=0(7), (1)

where /M is the tangent vector to each geodesic.
One can show from this condition (with no use of
field equations) that the two-surfaces, » and »
constant, possess a metric given by
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We define the fundamental two-surface (F, 2-8)
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metric by

o S
T
It can be proved that if the line » =0 is a regular
timelike (null, spacelike) line then the (F, 2-S)
has positive (zero, negative) constant curvature.
The (F, 2-S) is most conveniently represented
by conformally flat coordinates. Hence

0 ] _
dl2 =g Z.jdxldx] =d§d§/P2, §=x2+ix3.

The function P=Plu, ¢, ¢), which will be our fun-
damental variable, is defined, by this construc-
tion, up to an arbitrary factor (x). Later it will
be shown how this factor can be normalized to 1.

If the line =0 is a singular line (i.e., the Weyl
tensor becomes infinite) then the Einstein field
equations yield differential equations for the de-
termination of P. (The best known examples of
this are the Robinson-Trautman type-II metrics.!)
It is these equations which must be analyzed and
from which one will extract equations of motion
plus information about the structure of the singu-
larity.

However, before we do this, it is essential for
interpretive reasons to consider briefly the flat-
space case of this coordinate system associaTe_a—
with a timelike world line.? Consider a timelike
world line in Minkowski space, whose coordin-
ates are given by y* = £#(u), u being the proper
time along the world line. The flat-space metric
tensor associated with the null cones emanating
from the world line can be given in the form

ds® = <1—2—§n r) du? + 2dudr—-

0

r2dtdt
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where

p =%, b b =0,
0 ® M

b, =%<1+;;,1-gg,c+§, —§1—§> (3)
We see that the (F, 2-8) is given by d¢dZ/P2. (It
can be easily checked that it is the unit sphere.)
The important point is that from properties of P,
one can extract all the information about the
timelike line. For instance, the maximum value
of P,/P, at each u, maximized with respect to
Z and Z, yields

. _ .e nau %
maxPO/PO—(iué )2, (4)

The angle ¢ and ¢ which yields this maximum is
the direction of the acceleration. We can thus
think of a one-to-one relation between P,/P, and
the acceleration vector é” . This interpretation
of P, and its derivative is basic for what follows.

As we can only here sketch the method of ob-
taining the equations of motion, it is best to il-
lustrate it in a special case, namely when Eq. (1)
becomes

p=-r"% o=0.
This restriction leads to the Robinson-Trautman
metrics! which are now summarized:

P M)

ds? =2[K- BT -——]du’+ Zdudr—f- atdg

2 P

(there is a minor notational change with the fac-
tors 2 and 3), where® K= 5%logP is the Gaussian
curvature of the (F, 2-8) [55=4P%(82/8¢3¢)] and
M(u) and P(u, £, ) satisfy

v

. P _
M-35 M=5%K. (5)

From this equation we will be able to obtain the
time dependence of the mass M, the acceleration
of the singularity, and equations of motion for
the internal degrees of freedom (of the singular-
ity) yet to be defined. In all our generalizations,
i.e., to general Ry =0 with Eq. (1) and to Ein-
stein-Maxwell theory, Eq. (5) becomes modified
by the addition of extra terms, which are inter-
preted to represent the interaction of a back-
ground field (suitably modified by the presence
of the singularity), both gravitational and elec-
tromagnetic, with the singularity.

We now impose the restrictive condition on the
solutions, that P can be written as

P=Py(1+1), (8)

where 7 is a regular function on the sphere ex-
pandable in spherical harmonics starting with
7=2 [this latter condition is not a real restric-
tion; it arises from normalizing the multiplica-
tion factor, mentioned earlier, in the P and from
the fact that any /=1 spherical harmonic can be
included in the P,] and P, is that given in Eq. (3).
This condition is merely the statement that the
(F, 2-S) is a deformed sphere. When Eq. (6) is
substituted into Eq. (5), the resulting equation
can in principle (though not in practice, due to
the extreme nonlinearity) be expanded in spheri-
cal harmonics. The /=0 equation gives the
equation for the time development of the mass
M; the I=1 equation gives the equation for P,/P,,
i.e., the acceleration according to our interpre-
tation, Eq. (4); and all the higher ! equations
give the time dependence of the different spheri-
cal harmonics of I, which are interpreted as in-
ternal degrees of freedom.

Though we have here, in principle, exact equa-
tions of motion, their analysis has been possible
only by an approximation method, namely by ex-
panding the equations in powers of I and by keep-
ing only the first and second powers. Here we
will just state some of the results; the details
will be described elsewhere.

(1) Robinson-Trautman. — In this case, if no in-
ternal degrees of freedom are excited one has
only the Schwarzschild solution. If internal de-
grees of freedom are excited, i.e., I/#0, then
they exponentially decay and the solution quickly
returns to Schwarzschild, emitting gravitational
radiation in the process. If internal degrees of
freedom with both even and odd spherical har-
monics are stimulated then momentum is radi-
ated and the singularity recoils, i.e., P,/P,+0.
We have also derived and analyzed the charged
counterparts of the Robinson-Trautman metrics.

(2) General case of R »=0.— Actually in these
calculations, we have specialized by setting a
pair of constants of integration (in linear theory
the dipole moment and angular momentum) equal
to zero. In this case the internal degrees of
freedom and acceleration are excited by the or-
der-of-magnitude terms in Eq. (1). If the strength
of the singularity (the mass) is permitted to ap-
proach zero, i.e., if we take the test-particle
limit, then P,/P,=0, which is identical with »=0
being a geodesic in the now regular background
space. The I, of course, goes to zero.

We obtain an interesting and very satisfactory
result if, before passing to the test-particle lim-
it, we constrain the internal degrees of freedom
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to be zero. =0 is then still a geodesic, but in
addition there must be neighboring geodesics
with zero geodesic deviation from it— the geode-
sic must be part of a rigid congruence. This
gives an intuitive picture of the internal degrees
of freedom responding to the equation for geode-
sic deviation.

(3) Einstein-Maxwell theory. — In this case the
analysis is many times more difficult than in the
previous cases and has not been completed.
Nevertheless, to lowest order in the approxima-
tion, several interesting results and one sur-
prising result are obtained. The Lorentz force
law in terms of a unique “background” is ob-
tained, as well as electromagnetic interactions
with I. The surprising result was the appear—
ance of the radiation reaction term '3‘9 ( g u
+EYEXE M) in the force law, with no mass re-
normalization term. This result is preserved
under the test-particle limit. It appears to us
as if this is a major success of this approach.

It supports speculations that a quantized version
of general relativity might eliminate some of
the self-energy difficulties in quantum electro-
dynamics.

It seems natural to interpret the singularities
in Robinson-Trautman solutions as “elementary”
singularities, with no interactions with external
sources, while the more general solutions would

represent the interaction of these “elementary”
singularities with sources or a background field.
The same could be said of the charged counter-
parts.

There appears to be a major drawback in this
approach to equations of motion. The accelera-
tion has been formally defined in terms of P,/
P,, in analogy with flat space. But no means has
been presented by which, even in principle, Po/
P, and hence the acceleration could be measured.
The situation is, however, not hopeless— it ap-
pears likely that one can place a family of geo-
desic observers into such motion that by observ-
ing the time derivative of the Doppler shift, they
would be measuring directly P,/P,. This can be
done when the world line »=0 is nonsingular.
This point will be amplified on in the more com-
plete version of this work.
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Meteoritic whitlockite containing excess fission tracks has a large concentration of
excess neutron-rich xenon isotopes which is 25 times that calculated from the track
density. The isotopic spectrum is identical to that calculated previously for the Pasa-
monte achondrite. These results uniquely associate this spectrum with in situ fission.
Identification of the fissioning nucleus as Pu?¥ gives Pu®/4/U?8~1/30 at the time of
xenon retention. Neither “sudden” nor “uniform” nucleosynthetic models give consis-

tent solutions for Pu?44/U?38 and U235/u238,

There are two independent lines of evidence for
fission products in meteorites: (1) Several me-
teorites contain distinct enrichments in the iso-
topic abundance of the neutron-rich Xe isotopes
suggestive of fission.!™® (2) Studies on minerals
from several other meteorites have revealed high
densities of charged-particle tracks with proper-
ties characteristic of fission tracks rather than
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tracks of heavy cosmic-ray ions.*™®

In all cases studied the concentrations of U ap-
pear to be inadequate to account for either the ob-
served track densities or the amounts and isotopic
composition of the excess Xe in terms of sponta-
neous fission or induced fission. The excess fis-
sion tracks and excess neutron-rich Xe are usu-
ally attributed to the spontaneous fission of Pu?**



