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The Rys F model of hydrogen-bonded antiferroelectrics is generalized to include all
ionized vertices. For a class of realistic choices of energy parameters, it is shown
that this model is equivalent to a two-dimensional Ising model and consequently exhibits
a logarithmically second-order phase transition.

Recently, the statistical problem of two-dimen-
sional hydrogen-bonded crystals has been the
center of considerable interest.'”® The model
one usually considers is a square lattice of N
vertices with one hydrogen atom per lattice edge.
Since the hydrogen atoms assume off-center
positions on the edges, one usually assumes that
each lattice site has precisely two near and two
distant hydrogen atoms (the ice rule). Obviously,
this is only a crude approximation and, for a bet-
ter description of real physical situations, the
other (ionized) types of vertices must be includ-
ed. Unfortunately, the previous methods of exact
solution are incapable of straightforward exten-
sion to the realistic models and the precise na-
ture of the phase transition, when the rigid ice
rule is broken, has not been clearly understood.*

In this Letter we report some results related to
this problem. We consider the Rys F model® of
an antiferroelectric and modify it by including all
ionized vertices. For a large class of realistic
energy parameters we are able to show that the
modified model exhibits a logarithmically second-
order phase transition. This is in contradistinc-
tion to the peculiar infinite-order phase transi-
tion of the F model.? Since our model includes
the F model as a special case, it is then possible
to see that the infinite-order transition of the F
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model arises as a limiting situation of the more
familiar lambda-type transitions.

Following the usual convention,'™® we specify
the positions of the hydrogen atoms by drawing
arrows on the lattice edges. Then, as shown in
Fig. 1, there are 16 different kinds of vertex con-
figurations. The vertex energies for an antifer-
roelectric model are

e, Te,=eg=e,~€> 0,

es=eg=0,

e,=eyg=be> 0,

€g=e =" =eg=ae>0. (1)

where e; is the energy of the ¢th kind of vertices.
If only the vertices (1) through (6) are allowed
(@a=b=x), we have the Rys F model. The verti-
ces (7) and (8), each with four arrows in or four
arrows out, are the doubly ionized vertices. The
vertices (9) through (16) are the singly ionized
ones. In the following we shall consider the case

b=4a-2, )

with the parameter a otherwise arbitrary. For a
suitable choice of a, e.g., a=10, this model
should provide a reasonable description of the
real physical situations.
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FIG. 1. The 16 kinds of vertex configurations and the vertex energies.
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Our approach is based on the observation that
the antiferroelectric model specified by expres-
sions (1) and (2) is equivalent to an Ising model.
The Ising lattice, which is shown in Fig. 2, con-

sists of 2N spins and has the following energy pa-

rameters:
J=5(2a-1)e,
J'==3(@-1)e. (3)

To see this equivalence, let us superimpose L,

the square lattice with 2N edges, along the diago-

nals of the Ising lattice Ly with 2N spins. This
superposition is carried out in such a way that
each edge of L covers precisely one spin of Lj.
Now each spin in Ly can assume two values +1
and similarly each edge in L can be directed in
two different directions. Thus there clearly
exists a one-to-one correspondence between the
22N spin configurations of Ly and the 22N arrow
configurations of L. More specifically, we shall
adopt the following rule of correspondence: spin
+1 in an even column and spin -1 in an odd col-
umn - arrow in the upward directions, spin +1
in an odd column and spin —1 in an even column
- arrow in the downward directions. Here, the
columns of the Ising spins are numbered alter-
nately even and odd. The Ising energies of a unit
cell consisting of four —J and two —J’ interac-
tions are taken to be the corresponding vertex
energies for the antiferroelectric lattice L. It is
then easy to derive the 16 vertex energies from
the energies of the spin configurations. We find

e,=e,=eg=e,~2J'=(1-a)e,
e;=eg=—4J-2J'= —qge,
e,=eg=4J-2J' = (3a-2)e,

e9=610=°°.=e16=0' (4)

When we add a constant energy ae to (4), the re-
sulting vertex energies are identical to those
specified by (1), and this completes our proof.
More precisely, we have established the follow-
ing relationship:

f=a€+2f1. (5)

Here, f is the free energy per vertex of the anti-
ferroelectric model specified by (1) and f1 is the
free energy per spin of the Ising model defined
by (3).

The critical behavior of the antiferroelectric
model is now obtained from the properties of the
Ising model. The associated Ising problem can-
not be solved exactly because of the presence of

-J

J'

FIG. 2. The equivalent Ising lattice. The black dots
denote the spins, and the lines denote the interactions.
The interactions J and J’ are given by Eq. (3).

the “crossed” interactions. However, the prob-
lem is now much more tractable and various
techniques useful in treating the Ising problems
can be employed. In particular, it is generally
believed, and strongly supported by the results
of numerical studies,® that for two-dimensional
Ising models with finite-range interactions the
critical indices are likely to be the same. Con-
sequently, we conclude that the modified F model
possesses a lambda-type transition and that the
specific heat is likely to have a logarithmic sin-
gularity.

Our model is exactly soluble in the following
special cases: (i) For a=%, b=0, or J=0, J’
=€, the model reduces to a one-dimensional Is-
ing problem and consequently exhibits no phase
transition. (ii) For a=1, =2, or J=}¢, J’=0,
the associated Ising problem is soluble, and the
specific heat is known to possess a logarithmic
singularity. (iii) For a=« and b=2, the model
is again soluble by an independent approach’ with
critical behavior identical to that of (ii). (iv) For
a= and b=« the latter is the F model solved
by Lieb, 2 who showed that all derivatives of the
free energy are continuous at the singular point
(an infinite-order phase transition). The critical
temperatures in these soluble cases are as fol-
lows:

a=3and b=0, T =0; @)

C
a=1land b=2, ch/e=%1n(w/_2+ 1)

=0.567 296; (ii)
a=wand b=2, kTC/£= 1/In(V2+1)

=1.134 59; (iii)
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FIG. 3. The specific heat per vertex for various en-
ergy parameters a and b. The dashed curve illustrates
the residual “spike” expected for some large @ and b.

a=x and b=, ch/e=l/1n2=l.44269. (iv)

The specific heats for these cases are plotted in
Fig. 3.%°

It is of interest to investigate the behavior of
our model as the parameters a and b vary. Asa
or b increases, the disordered states will carry
smaller statistical weights. One then expects
that the long-range order would increase and, as
a consequence, the transition temperature cannot
decrease.'® This resembles very much the situa-
tion of the Ising ferromagnet for which the Curie
point cannot be lowered by an increase of the fer-
romagnetic interactions.* For our model, as a
varies from 3 to =, the transition temperature
increases from the absolute zero to the value?
€/k1n2. Since it is known that for a =« all deriv-
atives of the free energy are continuous,? it ap-
pears that, as a — =, the “spike” in the specific
heat eventually disappears with zero width and,
as a result, the phase transition goes over to an
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infinite-order one. The dashed curve in Fig. 3
illustrates one such residual “spike” expected
for some large a and b.
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