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M. Revzen*
Department of Physics, University of California, Los Angeles, California 90024

(Received 3 April 1969)

A new method for calculating the resistance of superfluids is proposed. The method is
applied to derive the temperature-dependent thickness of He films at which superflow
ceases. The agreement with the experimental results is good.

The calculations of the electrical conductivity
for thin superconductors are conveniently made'
in the gauge where (c = I)

E = aA/at, (I)

where E is the longitudinal electric field and A is
the vector potential. This gauge is convenient be-
cause in effect, it couples the external electric
field to the electric current directly. ' In the case
of superfluids an external longitudinal field is
coupled to the density and hence the calculation
of the conductivity density (i.e. , the ratio of the
current to an external field in the limit of small
frequency and small wavelengths) is more com-
plicated. In the first part of this note we argue
that any external longitudinal field can be made
to couple to the velocity in close analogy to the
electromagnetic situation. Once this is done we
transcribe the calculated results' &' &' for the re-
sistance of thin (two dimensional, 2D henceforth)
superconductors to that of the uncharged super-
fluid. We then show that the calculated values
are in fair agreement with various experimental
results. In this connection we make two remarks:
(a) In superfluids one does not measure the resis-
tance of the superfluid as a function of tempera-
ture for a fixed film thickness (d). Rather, one
observes' the onset of superf low for a fixed tem-
perature as a function of thickness. (b) The
meaning of 2D is different in the two cases (su-
perfluid and superconductor) because of the dif-
ferent boundary conditions which are considered.
Thus the superconductor's wave function (in the

Landau-Ginzburg sense, LG henceforth) has a
vanishing normal derivative at the surface of the
film. Here, then, 2D means 1(t' ($ is the LG co-
herence length). This is so because for these
thicknesses the order parameter is either con-
stant or zero. For superfluids the wave function
(in the Ginzburg-Pitaevskii sense, GP hence-
forth) is zero at least at the interface with the
substrata. Here d($ has the meaning of no su-
perfluidity (/=0). In this case 2D means 2$ &d/v
(( because for these thicknesses the wave func-
tion is either zero or tt

- sin(x/g).
We now show the transformation between the

wave equation wherein a longitudinal field is cou-
pled to the density, and the equation wherein the
equivalent field is coupled to the velocity. The
argument is simplest in the time-dependent
Schrodinger equation. ' Consider the many-body
equation

(tt'/2m)-v'g+ y(x)t/) =ibad/at. (2)

Here A is a curl-free vector field. By direct

(Introduction of an interaction term does not af-
fect the argument. ) In Eq. (2), y(x) is the scalar
field whose gradient gives the externally applied
force. Now define y via

N
g(x, x, ~ ~ ~,x, t ) = exp[-i Q f 'A(y . , t ).dy. I

I=1

xg(x, ~ ~ ~, x, t)

1102



VOLUME 22, NUMBER 21 PHYSICAL REVIEW LETTERS 26 MAY 1969

substitution of (3) into (2) one gets'

—(8'/2m)(V-iA)')t = isa)t/at (4)

mark that an important experiment result'~" is
that the bulk superfluid density varies with tem-
perature as"

provided we choose A(x, t) such that

cp(x) =Ij (aA/at) dy. (~)

Since A is curl free, the lower bound of this in-
tegral corresponds to an irrelevant constant
phase factor. For example if the external force
is

F(x, t) = F,[e +c.c.je, s-0+, (6)

then

i(q 'x (ut)-F e St
A(x, t) =~ +c.c. e, s-0 . (7)

EGO+ S

p (T)= ', T o-To-1 K,s &(T)' (10)

with B,=2.9&10 '
g cm ' deg '. This relation

will be used below as our definition of E(T) for T
TA. ~

At this juncture we introduce a free parameter
(Tc' into the theory. 0~' is the value of the excess
conductivity upon the attainment of which the sys-
tem has an essentially normal behavior, i.e., 0'
»(Tz' implies superfluidity and a'' «v~' implies
normal resistance. ' In terms of this parameter
we can rewrite Eq. (9) as

We do not consider the boundary conditions on

y here' because we are interested in an extended
system and, in fact, we are concerned with

P(H pN—+ y) ~-

where Zt is the grand canonical ensemble for
bosons and y is the relevant external field. 0
and N are the Hamiltonian and number operators,
respectively, and

P=(k T)B

with T the temperature and kB Boltzmann's con-
stant. Now ZG can be transformed to a function-
al integral' wherein the "time"-dependent La-
grangian appears. In this formulation the trans-
formation y —y corresponds to a change of vari-
ables. The Jacobian of this transformation will
cancel out' when physical quantities are calculat-
ed

We can now calculate the resistance of 2D su-
perfluids in complete analogy to the calculations
of electrical resistance. " In particular we con-
sider the GP Hamiltonian. Here the calculations
are identical to those of Ref. 4 where the LG
Hamiltonian was used. (Recall that LG is essen-
tially identical in form to GP. ) The calculation
for the excess conductivity (o') in the "clean" lim-
it'~ gives

(9)

where the bulk superfluid density ps is given by
ps =m(t'ai/b), with m now being the mass of a he-
lium atom. a and 5 are coefficients of binary and
tertiary terms in the GP equation. We now re-

o'(d) =cr 'exp

where de(T) is the equilibrium thickness for
which a' = oe' and Q is a dimensionless constant

4mB„(I')' (12)

This exponential dependence" renders plausible
the following two remarks: (a) oe' is not sensi-
tive to the particular experimental method of
study of the superf low. (b) All's the temperature
dependence of the problem is in the ratio d(T)/
&(T).

Now the equilibrium value of d(T) is given by'~"

87'K
T ln(P, /P) (13)

Here d is given in atomic layers while I', and P
are the saturated and unsaturated vapor pressure
of the helium gas.

We can now get the superf low onset thickness
for all temperatures. " Thus since o~' depends
only on de/$, the onset condition for a fixed T is

d /$ =const.
C

(14)

(This constant turned out to be -4.2; see Fig. 1.)
This equation gives t.ie critical thickness for var-
ious temperatures. Relation (14) is plotted in
Fig. 1 together with several experimental results.
The value of $(T) is the one given by Eq. (10) for
which the tabulated values" for ps(T) are used.
We remark that at the higher temperatures T
&1.7'K slight error in the experimental onset pa-
rameter P,/P results in large error in the criti-
cal thickness dz. ' Thus the scatter of the experi-
mental points in this region is not surprising.

1103



VOLUME 22, NUMBER 21 PHYSICAL REVIEW LETTERS 26 MAv 1969

6

I 2 3

Coherence length, g{T), in atomic layers

FIG. 1. Helium film thickness at the onset of super-
fluidity, d~, as a function of the temperature-depen-
dent length $ P') as determined by various experiments.
Onset of mass superflow from E. Long and L. Meyer
[Phys. Rev. 85, 1030 (1952)] (solid triangles) and R. P.
Henkel, G. Kukich, and J. P. Reppy [Proceedings of
the Eleventh Inteznational Conference on Low Tempera-
ture Physics, St. Andrews, Scotland, 1968 (to be pub-
lished)] (open diamonds). Onset determined by heat
transport from E. Long and L. Meyer [Phys. Rev. 98,
1616 (1955)] (open triangles), D. F. Brewer and K. Men-
delsohn [Proc. Roy. Soc. (London), Ser. A 260, 1
(1961)] (open squares), and K. Fokkens, W. K. Tacon-
is, and R. De Bruyn Ouboter [Physica 32, 2129 (1966)]
(open circles). Third-sound onset data from Kagiwada
et al. (Ref. 6) (solid circles). The intercept at )=0 is
interpreted as the solid layer in the helium film (Ref. 6).

The intercept at $ = 0 (i.e. , T = 0) is interpreted
as the solid He layer. The van der Waals force
gives rise to pressure greater than the solidifi-
cation pressure for helium for about 1.3 atomic
layers. ' This number is in good agreement with
intercept of Fig. 1 which gives 1.2 atomic layers.

We conclude by noting that the results seem to
confirm the intuitive idea that the fluctuation in
the order parameter gives rise to the appearance
of resistance in superf low. These fluctuations
are the same as those which give rise to the elec-
trical resistance in superconductor films. The
present formulation seems to give a good account

of the experimental result without recourse to a
specific model for fluctuation. "
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