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We used a more recent number for I' reported in
N. Barash-Schmidt et al. , University of California Ra-
diation Laboratory Report No. UCHL-8030 Revised,

1968 (unpublished) .
5N+. and N are the number of events with x &0 and x

&0, respectively, in the Dalitz plot.

&-r PARAMETERS AND SUM RULES AT THE SYMMETRY POINT*

E. P. Tryon
Columbia University, New York, New York

(Received 15 August 1968)

We show that the current-algebra predictions of Weinberg for Tt-~ scattering may be
consistent with the sum rules proposed by Chu and Desai, who have claimed otherwise.
We demonstrate that high-spin resonances neglected by Chu and Desai can make sub-
stantial contributions to the sum rules, and that inclusion of the next resonance after
those used by Chu and Desai results in agreement between Weinberg's predictions and
the sum rules. It is possible and likely that the remaining high-spin resonances give
negligible net contribution.

Consider the m -r elastic scattering amplitudes
Af(v, cos8), where v=s/4 —m~'. At the symme-
try point (defined by s = t =u), v and cos~ have
the values v0= --', m~', cos~=0. Crossing sym-
metry permits us to introduce two parameters ~
and ~y which satsify

A = —&Ao(vo, 0) = -~Am(va, 0),
ego gg2

1 2 ~V Voq0 ~V VO~0

A~

~ cos~ v vo, 0

By dispersing A'(v, cos&) at fixed energy, Chu
and Desai' (hereafter CD) obtain the formula'

dv 1 4 8
2

A. =- Y'. a
1 w 2I 0 v'-v v'-v v ~ cos6I—0 0 0

I
x ImA (v', cose'),

elude that ~ must be small and positive, in con-
tradiction to the current-algebra prediction of
Weinberg. In addition, CD conclude that ~, is
positive but substantially smaller than the value
predicted by steinberg. However, let us explicit-
ly evaluate the p, fo, and g contributions' to A.

and &, by using the Breit-Wigner formula'

2 2~+1
(l)I 8

ImA (v) =

]6(v+])(v-v. ) +y v8
where

y =—4(v +].) I' /v
2 2 2 2~+1

Assuming I'(p) = (130+ 20) MeV, I"(f,) = (140 + 15)
MeV, and that p and fo decay into two pions with
unit probability, it follows that

&(p) = 0.26 + 0.04,

A, ( fo) = —0.18+0.02,

A. (p) = (0.106+ 0.014)m

A. (f ) = (—0.093 + 0.008)I
0

1
where &2I= 3, -2, and ~ for I=0, 1, and 2, and
where cosa'= 1 vo/v' I-n addi.tion, CD assume
that A'(v, cos&) satisfies an unsubtracted disper-
sion relation for fixed energy, so that

dv' 2 If, — Q o. ImA (v', cos8') (2).
g o v'-v 2I' I=o

where the p and fo contributions to the integrals
in Eqs. (1) and (2) have been cut off at Ec m
= 1000 and 1500 MeV, respectively. ' The width
I'(g) and the probability $ of g-2& are less well
known, so we choose to express &(g) and &,(g) in
terms of them. For I'(g) in the range I'(g) = (140
+ 70) MeV = (1.0 + 0.5)m~, we find that X and &,
are proportional to I'(g) within 5', with coeffi-

CD report having made a "semiquantitative es-
timate" that the integrands of Eqs. (1) and (2) are
negligible for center-of-mass energies above
1500 MeV, and they use this estimate to justify
neglecting the contributions of the p recurrence,
g(1650), and all higher mass contributions. They
then carry out an analysis from which they con-
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cients given by

X(g) =—0.31)1(g)m

X (g) —= 0.186$ I'(g)m
1 r

where units of m~ are to be used for I'(g), and
where the integrals have been cut off at Ec m
= 2000 MeV. 6 Observe that if $ were unity and
I'(g) were as large as I'(p), then we would have
&(g) = &(p) and &,(g) = 2&,(p)" We shall return
later to a discussion of the experimental values
of I'(g) and $.

Fo.r the ~-wave contributions, let us consider
~-wave solutions obtained by the method of Try-
on ~ which incorporate Weinberg's predictions &

that

contributions to ~ and ~„ thus obtaining

X =—(0.003+ 0.016)m '+ 0.45'
1

'
7r 1

+ 0.186$I'(g)m

~=—0.04+0.05-1.4~ m '
1 r
+ 0.31$I'(g)m (4b)

where the indicated uncertainties are the roots
of the sums of the squares of the contributing un-
certainties. Since the uncertainties in Eqs. (4)
stem primarily from the uncertainty in I"(p),
they are correlated in sign.

Solving Eqs. (4) for & and $1'(g) in terms of
~„we obtain

& = (0.105+0.015)m

X—= -(A. /12)m '=—-Q.Q1,
1

(3a) A. = -Q. 5A, m '+ 0.Q4 k Q.Q3
1 7r

$1'(g) = 2.96& m '-(0.016+0.086)m,
1 7r

(5a)

g =—-7 g =—(7/4)A. m,
0 2 2 1 n'' (3c) which together with Weinberg's prediction (3a)

for ~, imply that
where af is the S-wave scattering length of iso-
spin I. An interesting feature of Weinberg's pre-
dictions is that while ap is small, the value of ap
together with the large value predicted for dA ""/
d&I p imply that 5«& rises above 45' somewhere

0
below ~c m

= 600 MeV, and that & «) rises to at
least 60'below 700 MeV." Solution~ of Ref. 8

is typical of those solutions wherein &
~p&

does
not quite reach 90 below 1000 MeV. Work sub-
sequent to the publication of Ref. 8 has revealed
the existence of solutions wherein ~«& is con-
strained to rise through 90' at a given mass ma,
where mo can vary at least over the range from
700 to 1000 MeV. Fortunately, the contributions
to ~ and ~, are not very sensitive to the differ-
ences between these solutions for &«& . If ~(p)'

remains below 90', or if 700 MeV ~m~, and if
we neglect the ~-wave contributions to ~ and ~,
coming from &c m above 1250 MeV, then all of
our solutions which incorporate Weinberg's pre-
dictions are such that

A. (So) —= -1.4A. m 2-p. Q3 a p.03,

A. (S2) =—-0.01+ 0.00,

X (So) = 0.45k. + (-0.11+ 0.003)m
1

'
1

' '
1T

(S2) =—(Q.Qp 1 + 0.001)m
1

Now let us add together all the aforementioned

~ = -0.01+0.03,

)I'(g) = (0.30+0.10)m .

(6a)

(6b)

Obviously Eq. (6a) is consistent with Weinberg's
prediction (3b) for &; therefore, we proceed to
compare the value (6b) for $1'(g) with experi-
ment.

The reported values" for I'(g) vary over the
range

(21 MeV or less) - I"(g) - 226 MeV.

However, there is a tendency for the larger val-
ues of I'(g) to be accompanied by smaller values
of $, so that there is wider agreement about the
product $1"(g) than there is about I"(g). The g
usually decays either into 2w or into 4m (includ-
ing g —pwm —4n and g —2p —4m). Of the groups
which have reported branching ratios, Johnston
et al."report I'(g) = (85+20) MeV, (g-2w)/
(g-4v) =0.8+0.2; Crennell et al. '~ report I'(g)
=—100 MeV, (g 2m)/(g -4m) ~ 0.67; and Biswas
et al."report I'(g)= (162+40) MeV, (g-2&)/(g
-4w) & 0.4. If we assume that the sum of the
probabilities for g-2m and g-4w is 80%,'6 then
the preceding experiments imply that $1'(g)
= (0.22+0.09)m~, )I'(g) ~ 0.23m~, and )I (g)
& (0.27 + 0.09)m, respectively. Thus the value
(6b) is consistent with our present experimental
knowledge of $1'(g), and we see that if the net
contribution from spin states with ~ -4 is negligi-
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ble, then Weinberg's predictions (3) are consis-
tent with the sum rules (1) and (2).

We remark that just as the g contributions to ~

and ~, are substantial, so can the contributions
from individual resonances with ~ ~ 4 be substan-
tial. However, the isospin-0 and -1 Regge re-
currences do contribute to & and &, with opposite
signs, so it is at least conceivable that the net
contributions from ~ ~ 4 are indeed negligible. In
addition, we remark that the value (6b) for $1'(g)
is not crucial for consistency between Weinberg's
predictions and the sum rules (1) and (2). Since
the next higher resonance to be expected ( fp re-
currence) would contribute to & and &, with op-
posite sign from the g, as would a possible nar-
row isoscalar spin-2 resonance" at 1060 MeV,
consistency might be possible if $1'(g) were
somewhat larger than (0.30+ 0.10)m~. If there
were another I= 1 Beg ge trajectory, then $ I (p)
might be smaller.

While the I= 2 sum rules (1) and (2) cannot be
evaluated with sufficient accuracy at present to
provide much information about ~ and ~„we
wish to emphasize that Weinberg's predictions
receive considerable support from other sources
Olsson" and quite recently Chu and Desai' have
derived I= 1 sum rules which support Weinberg's
value for ~, . Work by Tryon and especially
work by Olsson and Turner ' has shown that
Weinberg's values for ~ and ~, are consistent
with present data for the reaction mN-wm&; In
view of the aforementioned evidence, it seems
likely that the high-energy contributions to the I
=2 sum rules are indeed such as to render them
consistent with Weinberg's predictions.

It is a pleasure to thank Professor Boris Kay-
ser, Dr. bergen Koerner, Dr. K. W. Lai, and

Dr. Noel Yeh for valuable discussions.
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The residue of the P' trajectory has been obtained from experimental data and found to
be in agreement with the Ansatz of Barger and Phillips.

In a recent publication Barger and Phillips' in-
terpreted the recurring minima in the t depen-
dence of high-energy elastic-scattering cross
sections by postulating a novel structure for the
P' and ~ Regge residues. In particular, for the
P' amplitude,

f(P') =. -Pv [I+exp(-inn)]/sinn n,

they made the Ansatz that

P(t) = A. (t) sin'(-,'mo.')

instead of the usual Regge expression

P(t) = r(t)G(&)/I (&+1)

Here G(n) represents the function of o. required
by the various ghost-suppressing mechanisms. '
Insertion of Eq. (2) into Eq. (1) gives double zeros
at n= 0, -2, a,nd no zeros at n= -i, -3 ~ ~ ~

while the use of Eq. (3) yields zeros at n= -1,
-3, , and also possibly at even integral e, de-
pending upon G(n). The form of Eq. (2) was sug-
gested by assuming a linearly falling trajectory
for tbe P' and translating the dv/dt vs tdata to--
dcr/dt vs o..'

In an independent piece of work, ' the form of
the P' trajectory n(t) was deduced from experi-
mental data and found to be consistent with a
straight line out to t= -4 (GeV/c)'. Also, the P'
residue, although obtained in a somewhat more
general model than that of Ref. i, wa, s found to
have a t dependence qualitatively similar to Eq.

-2, G 2
dc/dt =p )aiv- pv [1+exp(-is o.) j/sing 0(I

-2 2 2 a+i
=P (a v +2aPvI

2 2A . 2I+P v /sin (-,'zo.)), (4)

where v = (s -u)/4m in units of v, = 1 GeV and m is
the nucleon mass. %e wish to emphasize here
that this is an extremely simplified expression.
It assumes that the w+P and w P cross sections
are equal, i.e., that contributions of I= i ex-
change (principally the p) can be neglected. This
is qualitatively consistent with experiment except

(2). In this paper we make a detailed comparison
of the model of Barger and Phillips with experi-
mental data, and show that Eq. (2) is qualitatively
correct and that Eq. (3) is inconsistent with ex-
periment.

In addition, we obtain n(t) for the P' (in the ap-
proximation that the p contribution to ela,stic
scattering can be neglected), and tbe t dependence
of a fixed Pomeranchuk pole. The importance of
the linearly falling trajectory has been empha-
sized by Chew, 4 and of the form of the P' residue
by Hoff. s

As was done in Refs. i and 3 we assume a fixed
Pomerancbuk pole with f(P) =aiv. We then have,
for tbe differential cross section of m+P or s P
elastic scattering,


