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The generic, nonrotating, homogeneous cosmological model for a closed space (Bian-
chi type IX) has a very complex singularity which can, however, be described in de-
tail. It appears that only the exceptional (previously studied) cases will have particle
horizons. Thus these models may lead to some insight into how the broad-scale homo-
geneity of the universe may have been produced at very early times.

Particle horizons' in cosmological models are
limits on the possibilities of causal interactions
between different parts of the universe in the
time available since the initial singularity. In the
standard metric ds' = rP( de + dx-zd+y +2dz }for
the radiation-dominated early phase of a Robert-
son-Walker (RW) cosmological model, it is clear
that the coordinate time hg required for a light
signal (ds'= 0) to connect two regions of spatial-
coordinate separation 4x is &q=~ &x~. Thus at a
fixed epoch go&0, no causal interactions subse-
quent to the singularity at q=0 have occurred be-
tween regions of coordinate separation

~
b,x

~

& q, .
In observational terms this effect says, for exam-
ple, that if the 3'K background radiation' were
last scattered at a redshift z = 7, then the radia-
tion coming to us from two directions in the sky
separated by more than about 30' was last scat-
tered by regions of plasma whose prior histories
had no causal relationship. These Robertson-
Walker models therefore give no insight into why
the observed microwave radiation from widely
different angles in the sky has' very precisely
(&0.2%) the same temperature.

We will describe a model of a closed (type-IX)'
universe which has a very different singularity
behavior than the RW models, but which could
evolve into the closed RW model at the present
epoch. Several aspects of the description paral-
lel the much simpler behavior of a type-I uni-
verse with metric

ds '= dt'+Q (l-)'dx '
I k k k

which is closed artificially by assuming that each
space coordinate xk is periodic with, say, period
4m. Near the singularity the matter or radiation
density terms in the Einstein equations can be ne-

glected, and one finds the Kasner solutions l k= t p& with Q (py) = 1 =g pp. The model with p&
= 5k' then has ds 2 = -dt2+ t~dg 2+ dy2+ dz —e 2g
x (-drt2+dx2)+dy2+dz2, where q= lnt. Evidently
light rays (ds = 0) can completely circle the uni-
verse in the x direction (Ax = 4w) in a coordinate-
time interval 4g=4m for this metric. Since the
singularity is at g= -~ here, this much coordinate
time has preceded every nonsingular epoch in
this model, and there exist no horizons for caus-
al propagation in the x direction. 4 To compare
later with the type-IX model, note that this inter-
val kg=4m corresponds to a volume expansion
ratio of 4 In(l, l, l~) = 4m. In the course of our de-
scription of the type-IX model, we will see that
it closely approximates this model during peri-
ods involving large expansion ratios, but does
this infinitely many times with different direc-
tions having the open channels of communication
each time. On this basis we expect that the ab-
sence of horizons in one direction only in this
particular Kasner metric corresponds to a total
absence of horizons in the generic nonrotating,
type-IX metric.

The Bianchi type-IX metric is

(2)

where oz = -(dg+ cos8dy), o = singd8-cosg sin8
& dy, and &r

= cosg d 8+ sing sin 8dy satisfy de= 2~,&ka&nak and are differential forms on the
three-sphere (covering group of the rotation
group) parametrized by Euler angles $8+ with 0
&g &4w, 0 & 8&m, and 0 &y &2x. To distinguish
between expansion (volume change) and anisotro-
py (shape change) we write ly=RexpP~, where

1071



Vor.UMI 22, NUMsER 20 PHYSICAL REVIEW LETTERS 19 Mav 1969

governs the volume, and the shape parameters
P& then satisfy gP& =O. As two independent
shape parameters choose'

P+ = P, + P, = —Ps = -ln(l JR)

and

P
—3

—1/2(P P )
—3—1/2 ln (f /f ) (4)

4= (dP+/dQ) +(dP /dQ) +4A e V(J3) (5)

and the equation

-1 -40
d(lnA)/dQ = -4A e V(P) (6)

governing the changes in A. [Equation (5) serves
as a definition of A.] The basic Einstein equa-
tions for P~(Q) are summarized by 5JZdQ=O,
where A is treated as a known function of 0 in
the Lagrangian':

'2 '2 1

2=-',A'(P+ +i3 )-2A e V(P),

and a prime means d/dQ. Thus the evolution of
this universe is described by the motion of a
point P-=(P~, P ) as a function of the time coordi-
nate 0 using this time-dependent Lagrangian.

The curvature anisotropy potential V(P) in
these equations is sketched in Fig. 1 and arises
from terms in the Einstein equations due to the
anisotropy of the curvature of the three-dimen-
sion space sections of the universe. The defini-
tion is

V(P)= —,'e -se +cosh(v 3P )

+ ~se +[cosh2(V 3P )—1]+1. (8)
2P+

This function has the symmetry of an equilateral

The closed (k =+1) RW models are the special
ca.se P+=O=P

The evolution of this universe is described by
giving P as functions of Q, i.e., by giving its
shape as a function of its volume. %'e concern
ourselves only with the behavior near the singu-
larity Q-~, R-O. Then the empty-space case
R»=0 is sufficient since the terms due to a
matter or radiation fluid are negligible near the
singularity. The Einstein equations include (dt/
dQ) = -2e Q(A e4-Q) 2 which would give t(Q)
were we interested in t Sinc.e A (see below) is
nearly constant, we approximate this as (/ft/dQ)

j.= -2A &e henceforth to obtain simpler equa-
tions near the 0-~ singularity. Then the entire
problem is governed by a function V(P) which en-
ters in an energylike equation

triangle reflecting the equivalence of three axes
in the metric [cf. Eq. (4)]. For P+--~ the as-
ymptotic form

-4pV- 3e

shows one of the three exponentially steep walls
on which the equipotentials are straight lines
(e.g. , P+=neg. const). The corners of this trian-
gular potentia. l are flared open; for instance, if
43+-+~ with

~ P ~«1 one finds

V(P)-4P s ++1'2 2J3+

so the equipotentials, P ~e ~+, narrow down

(10)

FIG. 1. Equipotentials of the function V(P) are sketched
here in the P plane from the asymptotic forms of Eqs.
(9) and (10). (Equipotentials near the origin, not shown,
are closed curves for V& 1.) Between successive equi-
potentials on this diagram, which have separations 4P
=2, V increases by a factor of e =3&&10 . From Eq.
(5), the system point P(G) moves with velocity (dP//iQ)
= 2 except when it approaches a limiting equipotential
V =Ae4~. This limiting equipotential moves outward
with velocity (d'pwsll//iQ(=1 except during the brief pe-
riod when the system point P bounces against it. The
"velocity" dP/dQ changes its direction in what appears
to be an ergodic way as a result of these bounces; and
whenever it is closely parallel to one of the three cor-
ner axes, horizons along the corresponding one of the
three expansion axes of the universe approach (or per-
haps exceed) the circumference of the universe.
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showing a velocity' (dP all/dQ) = —1, which is
outward or expanding as 0 increases, during the
free motions when A is constant. The P point can
therefore overtake the receding potential walls
and make repeated collisions, thereby shifting
from one Kasner-like model to another at each
collision.

The equilateral-triangle geometry means that
idpco»er/dQi=2idp ail/dQi. Thus if the sys-
tern point finds itself running toward a corner
rather than a wall of the potential, the velocities
P' and Pcorner' are in first approximation equal,
and Kasner behaviors with these parameters will
last a long 0 time. But these directions of P mo-
tion are just those required to remove horizons
in a particular direction; so the long duration
(b Q» +m') allows us to anticipate a similar effect
here. The Kasner solution labels (P„P„P,) and
the velocity dP/dQ are related by

d p+/dQ = 3p~- I = 2(3-s')/(s'+ 3)

= (2u'+ 2u —1)/(u'+ 1),

dp /dQ=3 (p -p )=+4(3 2s)/(s +3)
= 3"'(2u+ 1)/(u'+u+ 1) (12)

which introduces labelings s and u for later use.
If a communication phase (u = —1, 0, ~) persisted
as 0-~, then causal influence couM circumnavi-
gate the universe only in one direction, as in the
Kasner models or the Taub-NUT metric' [which
is type IX as in Eq. (2), but with P =0, and has

exponentially. The potential satisfies V(P) ) 0
and vanishes only at the origin, where V= 2(P+'
+)3 ').

Because the potential rises so steeply for large
P, little Q time is spent with the P point bouncing
against the potential wall [second term of Eq. (5)
large] and most of the time is spent in free mo-
tion when V can be neglected. This latter condi-
tion then gives tl'—= (P+"+P '2)'"=2 from Eq. (5)
and A =const from Eq. (6). But V=O just repro-
duces the Einstein equations R»=0 for Bianchi
type I; so these epochs parallel Kasner solutions
using 0 = -3 lnt+ const as the independent vari-
able.

The system velocity dP/dQ has maximum mag-
nitude 2, but the potential is time dependent and
also moves. In Eq. (5) let the value of P+ at
which the energy level "4"and the potential well
4A le 4QV intersect be called I6 ail. Then as-
ymptotically from Eq. (9) we find

P = -Q--,' ln(3A)
wall

u =+~ asymptotically]. To see that this cannot
occur we set P+ = P, + 2Q, assume i P i

« I, and
use Eq. (10); so the Lagrangian for the fi mo-
tion becomes

1 1 1

giving simple harmonic motion for P with a fre
quency &u

= 4A 2et o. Recognizing then that P,
can change slowly, we use the adiabatic invariant

2 2 2
Z =E . /&u = +A '(P +&a P )

and Eq. (5) for dPgdQ to deduce the behavior P,
= ln(Q, -Q)+ const. This shows that as Q increas-
es toward Qo (an integration constant) the P point
drifts away from the corner of the potential (PD
—-~) to resume bouncing on the flat walls as the
small P approximation breaks down. [The adia-
batic analysis also shows (p ')~ (Q,-Q) ' and
&u '=const for as long as P remains small. ]

It remains to study the bounce when P collides
with a flat face of the potential wall, say the one
at negative P+. Then, using the asymptotic form
(9) for V, the Lagrangian is

Since p does not appear, p -=sZ/sp '=A"'p
is a constant of motion. Another constant is
found by comparing the equations p+'= (8/3)A
xe (t++Q) from this Lagrangian and

(A')'=- A '. """'
S

from Eq. (6) with the result (p++4A"')'=0. The
constant (p++ 4A"')/p can be expressed simply
in terms of P~'

(p ) '(p++4A'")=(8+'+4)/P '

= —,'W3(~s+ 3/s). (13)

The final form uses the parametrization of P+'
introduced in Eq. (12). This parametrization is
only possible during the Kasner epochs when P+"

P "=4, i.e., for the initial and final states of
the "bounce. " These states must, by Eq. (13),
have the same values of 3s+ 3/s; so the bounce
from one Kasner-like solution to another is de-
scribed by the operation B,:,s -3/s. I looked—for
this simple way to restate the bounce law in
terms of a parametrization of the Kasner models
after Wheeler' suggested that studies of singular-
ities by Belinsky and Khalatnikov had also found
alternating Kasner-like epochs but with very sim-
ple description in terms of a related parameter
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u = (3-s)/2s. A preprintB of their work has re-
cently appeared and a portion of it applied to this
type-IX metric. Their qualitative picture of the
solution and ours are consistent, and they pro-
vide a corresponding numerical example; how-

ever, their techniques are entirely different
[they make no use of the Lagrangian (7) nor the
potential (8)j, and they do not consider the signi-
ficance of the results for the questions of hori-
zons and the establishment of large scale homo-
geniety in the early universe.

The Lifshitz-Khalatnikov' bounce law

amount; these would be fixed points of operators
P»B P„B P» B . The simplest of these
is P»B with fixed point uf = &(1+5'"), for which

P bounces off every wall of the triangular poten-
tial in turn without ever heading toward a corner.
This behavior is unstable, however, and some of
the exponentially small terms neglected in Eq.
(9) when deriving (14) will no doubt divert the
corresponding exact solutions toward the u -0
stages which open up horizon limits.

A full account of this work will be submitted
for publication elsewhere.

B:u- u-1 (14)

is much easier to use than 8, above. The two are
related by 8 =P»B,Py2Pyp where the P's are op-
erators permuting the Kasner exponents py P2 P3
namely P». u-1/u, P» u--(1. +u), and P». u- -u/(1+u). It appears that almost all solutions
come arbitrarily close to the values u = -1, 0, ~
(s = -3, +3, 0) which we recognize as the states
giving communication along the three correspond-
ing expansion axes of the universe. To see this,
start with u ) 1 by using the permutations to put u

in the standard interval u & 1 (one of the six per-
mutation-equivalent intervals with end points u
= -~, -2, -1, ——,', 0, 1, ~). Then after a finite num-
ber of steps u -u-l, which correspond to P(A)
rattling back and forth between the walls leading
to one fixed corner of the potential, one will find
0 (u ( 1. The permutation u - 1/u then resets u
& 1 again, to let P begin rattling in another cor-
ner. On the basis of this analysis, a countable
set of initial u values could avoid u = 0 by a finite
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W'e have observed -3000 examples of the reaction ~ d-Ppm & 7t and report on -300
events in which the z+n ~ mass is in the ~ mass region and 40 events in the g mass
region. Differential cross sections are presented. There is evidence for a backward
peak in the overall channel. We give values for the ~0 density-matrix elements in the
forward direction. Our value for Repro is negative, in disagreement with various theo-
retical models.

In an exposure of 3.65-BeV/c m+ in the Brook
haven National Laboratory 20-in. bubble chamber
we have observed -3000 examples of the reaction
v+2-P+w+m v . We report here on an analysis
of those events in which the m'+?t ?T invariant
mass is in the co' or g' regions, giving differen-

tial cross sections for (d' and g' production and
a determination of the ~' density-matrix ele-
ments. Results on the higher regions of 3?t mass
can be found elsewhere. A detailed discussion
of the entire PPn+w n' channel can be found in the
work of Benson. %e define the "spectator" pro-
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