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This band model does not resolve the dilemma
of the positive thermopower versus the negative
Hall coefficient observed in covalent alloy glass-
es, e& ~y ~1 nor does it explain the magnitude of
the density of band states near the mobility edges
which is needed to explain the magnitude of the
factor o in the conductivity. "~"~23
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QUANTUM STATISTICS OF ONE-PHOTON INTERACTION OF LIGHT WITH MATTER
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Quantum statistics of one-photon interaction of light with matter is investigated. It is
found that in general the density operator changes. For a chaotic field, however, the
density operator changes only in a trivial way.

Quantum statistics of nonlinear interactions of light with matter has recently been investigated. 'i' In
nonabsorbing media, one-photon interactions obviously do not change the photon statistics. Shen has
shown that if the incident radiation resonates with the atoms of the medium, the density operator
changes in a trivial fashion and the nature of the radiation remains the same. In this paper, we re-
port the results of our investigations of change in density matrix in one-photon interactions. The eval-
uation of the density matrix is simple and can easily be extended to two- or more-photon interactions.
We find that in general the density matrix changes in a nontrivial way. Coherent light does not remain
coherent and the photon fluctuations increase. The chaotic light, as a special case, however, remains
chaotic.

Lambropoulos, while discussing statistics of the two-photon amplifier, found the density matrix by
considering the matrix element in occupation number space for the field, and solving the difference-
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differential equations in the matrix elements. This method has limited applicability as has been ob-
served by Lambropoulos. ' It is, however, easy to find the matrix in the P representation.

In the P representation, ' the density matrix of radiation p(t) is written as'

p(t)= fd v P(v, t) I v&(vl,

where
I v) is the normalized eigenstate of the annihilation operator a with the complex eigenvalue v.

Equation (1) can be used to find P(v, t); it gives'

P(v, t) =m 'fd'a exp[I vl'+I ol'+ o*v-av*]&-o
I p(t) I

n& (2)

We consider the model commonly used for studying laser theory, viz. , interaction of light with an
atom having effectively two levels only. For one-photon interactions, we need consider the Hamiltoni-
an H-HO+HI, where

H = ah+ o~o, H =~ ~ +g*~a~.
0 0 ' I (3)

where the time-evolution operator u(r) is given by

u(r)=u (r)+ Q (-i) f dr f dr '' f" dr u (r r)H u-(7 -r )H u (r —r )
(o) " .« '1 'n-1 (0) (0)

o 1o 2 o n 1 I 1 2 I n-1 nn=l

xHu (r ), u (r)—= e 0 . (5)
0 0 iHor-

n'
If the interaction starts at time t„p(to) = p (to)pR(to), where superscripts A and R refer to the atom

and radiation, respectively. At time to+ &, we have

P(v, t + r) = n 'fd'a exp[I v I'+I nl'+ o~v-nv*]Tr &-o
I p(t + r) I o&.' 0 A 0 (6)

Here v~ and o are, respectively, the exciting and de-exciting operators of the molecule whose natural
frequency is &u„and $=L &(2&v) &(ule'k'xp all&, L being the volume of the box used for normaliza-
tion, I u& and

I l& being the upper and lower states of the atom, and e being a unit vector along the direc-
tion of polarization of light. The equation of motion of p(t), viz. , dp(t)/dt=i[p(t), H], has the solution

p(t+ r) =u(r)p(t)u~(r), (4)

Lengthy but direct calculations for one-photon emission and absorption lead to

P(v, t + r)=P(V, t )+I gl [N (H(8~/BVBV*)-H-G*V(8/BV) —GV*(8/BV*))' 0 ' 0 u

+N (H+GV(8/BV)+G*V*(8/BV+)/]P(V, t ),

where V=ve', Nu= p„„(t0), N— t= pit (t0) G—=((u0 (u) ( ex[p(i(u 0(d) ]r—I), and H=-(G G+~), if we
take I &u, -&u

I

' «r. In Eq. (7), the term HN„ I $ I'(8'/8 VB V*)P(V, t0) represents the effect of spontaneous
emission. The other terms involving Nu and N~ represent the effects of induced emission and absorp-
tion, respectively.

For a coherent field, P(v, t,)=6'(v-v, ), P(v, t, + r) contains, besides the delta function, its deriva, —

tives also. The field therefore does not remain coherent after interaction. For a chaotic field, P(v,
to) = (m(n&) 'exp[-I v I'/(n&], Eq. (7) leads to

P(v, t + r)=(m(n&) 'exp[-I vl /(n)][1-Hl $I'(N ((n) '-lvl'(n) ')+(N -N )(1-lvl'(n) ~))]' 0 u u

This can be written as P(v, t, + r) = (w(n'&) 'exp[-lvl'/(n')], where

&'&=&n&+Hi&I'[N +(N -N )lvl'].
u u l

(8)

From Eq. (6), it is seen that (p(t, + r)ata) =(n'& given by Eq. (9). This clearly shows that the chaotic
field does not change its nature; only the total number of photons changes.

For initially coherent and chaotic fields, the probabilities for detection of m photoelectrons' in the
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interval T at time to+ T are

p (m, t +T, T)=P +HKTI $I [N f~Pcoh coh 2 coh + (I-2e)P -(I-e}Pcoh coh
'0 ' m Q m 2 m-1 m

+(N -N)lv
I (P -P )],
2 coh coh 2

u l 0 m-1 m 0
(10)

p (m, t + r, T)=P +(P/KT}I )I [P -(m+1)P ][N +(N N)-(n)], (11)'0 ' m m m+1 u u l

where P = (m!) e e and P = (KT) (n') [KT+(n') ]
™1) are, respectively, the

probabilities for detection of m photoelectrons in time interval T before interaction with matter of the
coherent and chaotic fields and K is the photocathode efficiency. A little calculation shows that Eq.
(11) can be written as pcha(m t + v., T) = (KT}m(z') 1[KT+(n') 1] (m+1).

The variance of photoelectrons is' bm =(m)+ (KT)'(Az'-(n)), where bm'=(m')-(m}', and h~'=(n')
(n)-', m and n being the number of photoelectrons and of photons, respectively. It can easily be

shown with the help of Eq. (7) that &„-(n) is )0 for both initially coherent and initially chaotic fields
and thus these fields do not exhibit anticorrelation' at any time.

As a measure of fluctuations in the number of photons let us consider 8„'=b,z'/(n)'. For initially
coherent fields,

(& + r}=l v I [I+&I Il (N +N -N
I

v I )]
coh 2 -2 2 2

n 0 0 Q l Q 0

As I vol » 1, this shows that fluctuations always increase. For initially chaotic field,

(12)

(t +7)=I+(n) +HI (I (n) [N (n)-N (I+(n))].
n 0 l u

(13)

This equation shows that if NQ &Nl, fluctuations decrease after interaction. From this, Lambropou-
los' has wrongly concluded that the Planck distribution tends towards something intermediate between
the Planck and Poisson distributions. Equation (13) can, however, be written as hzcha2(t0+ r) = 1
+(n') which shows that the field retains its nature, the only change being in (n).

Our results, viz. , change in the nature of a coherent field and retention of the nature of a chaotic
field in one-photon interactions with matter, can easily be verified experimentally. It is well known
that for a coherent beam, hm'=(m)+(m'). From Eq. (7), we find that for laser light which has trav-
eled through an absorbing medium,

(t + r}=(m(t + r)&+2(KT) ffl (I N Iv
coh 2 2 2 2

m 0 0 + 0

&(m(t + 7')),

if N+&0. For chaotic light, however, one will observe that

(14)

(t + T)=(m(t + r))+(m (t + r}).
cha 2 2

m 0 0 0
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The generic, nonrotating, homogeneous cosmological model for a closed space (Bian-
chi type IX) has a very complex singularity which can, however, be described in de-
tail. It appears that only the exceptional (previously studied) cases will have particle
horizons. Thus these models may lead to some insight into how the broad-scale homo-
geneity of the universe may have been produced at very early times.

Particle horizons' in cosmological models are
limits on the possibilities of causal interactions
between different parts of the universe in the
time available since the initial singularity. In the
standard metric ds' = rP( de + dx-zd+y +2dz }for
the radiation-dominated early phase of a Robert-
son-Walker (RW) cosmological model, it is clear
that the coordinate time hg required for a light
signal (ds'= 0) to connect two regions of spatial-
coordinate separation 4x is &q=~ &x~. Thus at a
fixed epoch go&0, no causal interactions subse-
quent to the singularity at q=0 have occurred be-
tween regions of coordinate separation

~
b,x

~

& q, .
In observational terms this effect says, for exam-
ple, that if the 3'K background radiation' were
last scattered at a redshift z = 7, then the radia-
tion coming to us from two directions in the sky
separated by more than about 30' was last scat-
tered by regions of plasma whose prior histories
had no causal relationship. These Robertson-
Walker models therefore give no insight into why
the observed microwave radiation from widely
different angles in the sky has' very precisely
(&0.2%) the same temperature.

We will describe a model of a closed (type-IX)'
universe which has a very different singularity
behavior than the RW models, but which could
evolve into the closed RW model at the present
epoch. Several aspects of the description paral-
lel the much simpler behavior of a type-I uni-
verse with metric

ds '= dt'+Q (l-)'dx '
I k k k

which is closed artificially by assuming that each
space coordinate xk is periodic with, say, period
4m. Near the singularity the matter or radiation
density terms in the Einstein equations can be ne-

glected, and one finds the Kasner solutions l k= t p& with Q (py) = 1 =g pp. The model with p&
= 5k' then has ds 2 = -dt2+ t~dg 2+ dy2+ dz —e 2g
x (-drt2+dx2)+dy2+dz2, where q= lnt. Evidently
light rays (ds = 0) can completely circle the uni-
verse in the x direction (Ax = 4w) in a coordinate-
time interval 4g=4m for this metric. Since the
singularity is at g= -~ here, this much coordinate
time has preceded every nonsingular epoch in
this model, and there exist no horizons for caus-
al propagation in the x direction. 4 To compare
later with the type-IX model, note that this inter-
val kg=4m corresponds to a volume expansion
ratio of 4 In(l, l, l~) = 4m. In the course of our de-
scription of the type-IX model, we will see that
it closely approximates this model during peri-
ods involving large expansion ratios, but does
this infinitely many times with different direc-
tions having the open channels of communication
each time. On this basis we expect that the ab-
sence of horizons in one direction only in this
particular Kasner metric corresponds to a total
absence of horizons in the generic nonrotating,
type-IX metric.

The Bianchi type-IX metric is

(2)

where oz = -(dg+ cos8dy), o = singd8-cosg sin8
& dy, and &r

= cosg d 8+ sing sin 8dy satisfy de= 2~,&ka&nak and are differential forms on the
three-sphere (covering group of the rotation
group) parametrized by Euler angles $8+ with 0
&g &4w, 0 & 8&m, and 0 &y &2x. To distinguish
between expansion (volume change) and anisotro-
py (shape change) we write ly=RexpP~, where

1071


