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structure is in striking agreement with that of
Hall and Reinhardt ' for the case of N, which is
isoelectronic to CO.

The "bump" observed at the lowest energy oc-
curs at the location of the ground state of the
"transient" negative ion or higher. This would

allow the assignment of an upper limit to the elec-
tron affinity of CO. In Fig. 1 there is a definite
bump at 1.8 eV and possibly another at -1.6 eV.
This experiment assigns the value of -1.8+ 0.1 eV
as an upper limit for the electron affinity of CO.
The possibility of another "bump" at 1.6 eV may
reduce this value when greater sensitivity is
achieved.
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A nonarbitrary method is presented for the calculation of inelastic-scattering wave
functions by an expansion technique. The method can be applied for any incident energy,
including values at resonances resulting from stable or metastable bound states. Calcu-
lations are presented for an exactly soluble two-channel model problem which illustrates
the utility of the method.

A central objective in the development of ex-
pansion methods f'or treating nonrelativistic
quantum-mechanical scattering is the identifica-
tion of optimum criteria for defining the expan-
sion coefficients. The well-known variational
methods of Kohn' and Hulthdn' are arbitrary in
the sense that they are two of an infinite set of
prescriptions leading to phase shifts whose er-
rors are of second order. Moreover, the varia-
tional criterion alone is not sufficient to guaran-

tee in any reasonable sense an optimum wave
function, as is evidenced by the convergence
problems' exhibited by the Kohn method. The
difficulties are, at least in part, due to the ap-
proximation of a continuous-spectrum Hamilto-
nian by a finite-dimensional projection thereof
whose discrete spectrum does not necessarily
contain an a priori-selected scattering energy.
This consideration?ed one of the present authors
to propose a method for selecting scattering en-
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ergies at which expansion calculations would pro-
ceed favorably, 4 and this method has led to rapid-
ly convergent descriptions of elastic-scattering
processes. ' However, the method is limited to
elastic scattering, and it is not always easy to
obtain results for predetermined scattering ener-
gies. Nesbet' has recently contributed a valuable
discussion of the various expansion methods, ex-
plicitly pointing out the conditions which lead to
divergence in the Kohn method and indicating how

to avoid the divergence problem. Nesbet's ap-
proach also has the great advantage that it can be

applied to multichannel processes' as well as to
elastic scattering, but, like other variational
methods, it contains a measure of arbitrariness.

The present communication reports a method
designed to yield unique optimum-expansion ap-
proximations for both elastic and inelastic scat-
tering processes at arbitrary energy. For a cen-
tral-field Hamiltonian H of finite range (as would

be encountered, for example, in electron-atom
scattering) and a given energy E, we consider
approximate stationary-state wave functions g,
of definite angular momentum, of the general
form

2n m
q= pa.q, +P by. .

Z l . li=1 i=1

Here the y. are the complete set of asymptotic
eigenfunctions (unbound states) appropriate to en-
ergy E, and the qz are quadratically integrable
(short-range) functions needed to approximate g

within the range of H. There will be two asymp-
totically orthogonal y; for each of n (n ~ I) open
scattering channels, and m, the number of qi,
will be dictated by the accuracy desired. We as-
sume the g,- to be orthonormal, and the p; to be
both orthogonaIized to all q; and scaled to equal
asymptotic intensity.

In an n-channel problem there will be n differ-
ent stationary-state wave functions to be approxi-
mated as in Eq. (I). All scattering processes
can be characterized from the a; coefficients of
these wave functions since the a define the rela-

l
tive amplitudes and phases in the various chan-
nels. To determine the wave functions, we as-
sume (H-E)g to be described by the expansion

2n H2

(H-E)q= Q c.y. + Q d.q.. (2)
l l, l li= j. i=i

Equation (2) amounts to the assumption that
short-range functions beyond those important in

P do not contribute appreciably to (H-E)g. How-

M a+M b =Nc, (4)

where M&&, M&, and c are defined analogously
to the quantities in Eq. (3). We note that as the
range of Eq. (2) is increased, the left side of Eq.
(4), which contains only convergent integrals,
will approach a finite value, while the factor N
on the right side increases without limit. We
therefore conclude that c will vary as N ' as
will N~ c ~' (vide infra).

We now seek the set of coefficients a and b

which minimizes the norm of (H-E)g for a fixed
scale of P. It is not possible simply to set (H
-E)P to zero because E is not necessarily in the
spectrum of the projection of II defined by the ex-
pansion functions. For general c and d, the norm
of (H-E)g over a given range of Eq. (2) is (N~ c ~'

+)d)')"', and because N( c)' va,ries as N ', the
~d~' term dominates as this range is increased.
Thus our optimum specification of the minimum-
norm condition is to set d= 0 and make c mini-
mum. We now show that the condition d=0 is an
acceptable solution that can be imposed for arbi-
trary E.

Application of the minimum-norm condition de-
pends upon whether the matrix M~& is singular.

ever, even though (H-E)g is inherently a short-
range function, it is crucial to retain the y; in

Eq. (2), as expansions containing only a finite
number of q; cannot describe general behavior in
the transition region at the edge of the range of
H.

We require relations connecting the a; and b;
to the c; and d&. Substituting Eq. (I) into Eq. (2)
and taking scalar products with the q;, we reach

M a+M bd,
'OP

where M&& and M&& are matrices of elements
(q;~H-E~q ) and(q;~H E~q)-, respectively, and

a, 5, and d are vectors of coefficients a;, bi,
and d;. Expressions for the c; are obtained in a
less straightforward manner, as the pi are not
quadratically integrable, and moreover our aim
is to use the c; to optimize the representation of
g within the range of JJ. Ne therefore restrict
the range of Eq. (2) to a finite volume larger than
the range of IJ and determine the c; by taking
sca1ar products with the p;. If the range of Eq.
(2) is sufficiently large, the asymptotic orthogo-
nality and equal intensity of the pi will cause
(y; ~ pj) to approach Nb,&, where N depends on the
range of Eq. (2) but is independent of i and j. The
equation for the c; then takes the form
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When M~~ is nonsingular, the condition d=0 can be inserted into Eq. (3), which then has solution b

'M &&a. Substituting this result into Eq. (4), we have

('M -M M 'M )a = Nc.
vn nn nv

Multiplying ea,ch member of Eq. (5) by its adjoint,

(5)

aj(M -M M 'M )t(M -M M ' M )a =N'~ c~'
wn nn w 0p wn nn nP

so that a is to be chosen to minimize the left member of Eq. (6). For an n-channel process, we will
need n such a vectors. They are optimally given as the n eigenvectors of smallest eigenvalue of the
Her mitian matrix

M -M M iM )~(M -M M M ).

b M a=0, (8)

which helps indicate why b does not really depend
upon o.. For the case under consideration, Eqs.
(7) and (8) together define the same conditions as
Eq. (3) with d=0. Inserting Eq. (7} into Eq. (4)
we obtain

Ma+ke =Pc, (9)

where M =M&& M&&(M&&+-abOb0 ) 'M&& and
e=M b0 We now v. ary a to minimize

~ c~ as
given by Eq. (9), subject to Eq. (8) and a scale
condition which we may take to be aja = 1. For a
single-channel process, a is of dimension 2 and
is therefore completely determined by Eq. (8)
and the scale condition. This situation corre-
sponds to our previous approach, ' in which E was
set to make M&& singular.

For n-channel processes (n ) 1), a nontrivial
minimization of

~
c

~
must be carried out. If it so

happens that e = 0, then Eq. (8) is automatically
satisfied and a discussion similar to that at Eqs.
(5) and (6) identifies optimum a vectors as the n

When M&7} is singular, the foregoing discussion
must be modified. Singular M&& will arise for
certain E values, which may be of interest in
connection with resonances or because the calcu-
lations may be carried out more accurately at
these energies. We illustrate by considering the
case where one vector, b~, is annihilated by M~~.
Then Eq. (3) with d= 0 has solution

b=kb -(M +ab b t) 'M a, (7)0 qg 00 qy'
with n and k arbitrary (except that o 4 0). The
value of n does not actually influence b; its pres-
ence merely enables the inverse to have meaning.
Equation (3}also leads to

minimum-eigenvalue eigenvectors of MjM. If e
4 0, a minimization by the method of Lagrange
multipliers leads to

M~ee~M
a=p, M M- -A.I

eje
(10)

with p chosen to make aja= 1 and P. chosen so
that,

MjeejM
e M M- -A.I e = 0.

e j'e

The X values satisfying Eq. (11) can be proven
non-negative, and

~
c ~' can be shown to be propor-

tional to P.. The n a vectors of smallest
~ c~ thus

correspond to the smallest A values. These A.

values may actually be determined by finding the
eigenvalues X; and eigenvectors f; of Mj M

-M~ee~M/e~e, in terms of which Eq. (11) be-
comes the easily soluble algebraic equation
2;I jf; I'/(&;-&) =0.

The foregoing analysis indicates how, for an n-
channel problem, the minimum-norm condition
leads uniquely, for any energy, to n approxi-
mate scattering wave functions specified asymp-
totically by the coefficients a. Linear combina-
tions of these n wave functions can be taken so
as to form "channel" functions g;. The vector a;
for channel i is characterized, for the asymptot-
ic functions regular at the origin, by unit ampli-
tude in channel i and zero amplitude in all other
channels. From such a set of a; a reactance
matrix R and elastic and inelastic cross sections
can be obtained by standard methods. '

It is now possible, following ideas introduced
by Kato, ' to make a first-order correction to the
R matrix which leaves it in symmetric form and
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R11 R12 = R21 R22 911(e4

Table I. Elements of the R matrix and cross sec-
tions for elastic and inelastic scattering. m denotes
the number of expansion functions.

tions, the asymptotic functions chosen were p,
=lx,)»~,r, q', =lx,)(&-e r)«»&r, y&=lx&)
xsink2r, and y4=l X2)(1-e ) cosh,r. The short-
range functions were taken as

M = 1 3.03672 - 2.26139 1.18916 1.90365 0.84801 3.39205 2.43583 ri. =l x )r exp(-o r);
2 -36.65395 23.71994 -15.79199 2.15455 0.75478 3.01911 2.74710

3 10.47830 — 6.92822 4.13531 2.14241 0.78145 3.12581 2. 53334

4 16.06741 -10.46549 6.37432 2.16859 0.76946 3.07785 2.56148

5 17.95694 -11.68783 7.16861 2.16598 0.76946 3.07786 2, 55658

6 18.47464 -12.03122 7.39666 2.16409 0.76982 3.07926 2. 55950

7 18.69504 -12.16398 7.47660 2.16561 0.76928 3.07712 2. 55644

8 19.22830 -12.49501 7.68199 2.16795 0.76835 3.07340 2. 55526

9 19.92332 -12.94302 7.97126 2.16778 0.76814 3.07256 2.55619

10 20. 36053 -13.23003 8.15975 2.16691 0.76824 3.07294 2.55858

Exact 21.76525 -14.12742 8.73385 2.16791 0.76746 3.06985 2. 55844

results in significantly improved cross sections.
Letting R stand for the corrected, and R' for the
uncorrected reactance matrices, the correc-
tions satisfy

R = R 0-2(P i, ) ~~2a ~Ma (12)
ij

where a;~Ma& is equivalent to (g;l H El P&). Here-

M is defined as in Eq. (9), with o.'& 0 if M&& is
singular and n = 0 otherwise. The quantities k;
and kj are the magnitudes of the wave vectors for
channels i and j.

To demonstrate the utility of the analysis pre-
sented here, we give results obtained for an
exactly soluble two-channel-model problem used
by Huck" and more recently by Nesbet' to test
the convergence of several variational approach-
es to inelastic scattering. This problem is de-
fined in one dimension over the range 0 ~r ~~,
with Hamiltonian

2
H= 2 I x.»..&x. l, (x Ix.&=5,

ij =1 tj j g j g

and H~~= -2(d /dr ), H22= 2(d /dr )+0.375, H~2-

=H»= —,'C (r & 1), and H»=H„=0 (r & 1). Before
imposing orthogonality and normalization condi-

, =l x )r exp(- or), i=1, ', m, (13)
m+1 2 z

with expansion lengths up to a maximum of m. A

constant value of n; = 2.5 proved to give the best
rate of convergence.

The calculated cross sections are illustrated in
Table I for the case studied by Buck with C'
= 10.0, k, = 1.0, and k, = 0.5. It is found that more
rapid convergence is obtained for the cross sec-
tions than for the individual elements of the R

matrix. Uniform convergence of the R matrix is
observed with increasing expansion lengths.
Further studies of inelastic-scattering processes
in an atomic problem are now being carried out

using this proposed minimum-norm procedure.
We wish to acknowledge helpful discussions

with Dr. H. J. Kolker and with Dr. R. K. Nesbet,
who suggested the use of the model problem
chosen here.
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