VoLuUME 22, NUMBER 19

PHYSICAL REVIEW LETTERS

12 MAy 1969

ALGEBRAIC STRUCTURE OF SUPERCONVERGENCE RELATIONS*

Steven Weinberg
Laboratory for Nuclear Science and Physics Department,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 24 March 1969)

How to express superconvergence relations for pion scattering as statements about
the generators X, of chiral SU(2)®SU(2) is shown. One of the superconvergence rela-
tions has a remarkable algebraic significance: The matrix mJy (where m and J are the
mass and spin matrices) is the sum of a chiral scalar and the fourth component of a chi-

ral four-vector.

It has long been hoped that the various current-
algebra and superconvergence sum rules would,
when saturated with single-particle states, unite
all hadrons in a general symmetry scheme.
Nevertheless, the only hadronic sum rules which
have so far been expressed explicitly in a Lie-al-
gebraic form are the chiral sum rules for mass-
less-pion forward scattering; when saturated
with single-particle states, these read?

[Xa,Xb]=zeabcTc, (1)

Xa’[Xb;mz]]ozdab' (2)

[Here T, is the isospin matrix; a, b, and ¢ run
over 1, 2, and 3; m is the mass matrix (m)g,
=ma08a; and (Xg)h’g, ra is the reduced ampli-
tude for the collinear process a =B +7 with Py
and P, in the z direction, defined in terms of the
Feynman amplitude M by

M(a—B+m) Ean—l(maz_mBZ)

X 3
(‘Xa)x’ﬁ, ra’ )
where F; =190 MeV, X and A’ are the helicities
of o and B, and a is the pion isovector index.]
Also, X, is diagonal in helicity:
X =6 .
( a)A'B,Aa A’A(Xa(/\))ﬁa @)
These results tell us that the hadrons must for
each helicity be assembled into representations
of SU(2)® SU(2), but they offer no clue to how
these representations are related for different
helicities.
The purpose of this note is to emphasize that
all of the superconvergence relations for pion -
scattering may also be expressed as statements
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2 |

2 2, AA-a
MA'Bb,)\aa—[_St —t(s—ma )(S_mB )] F

A'Bb,xaa

about the matrix X,;. The absorptive part of any
pion scattering amplitude is determined by the
amplitudes for the noncollinear pion transitions
a—pB+7, and these amplitudes can be expressed
in terms of X, by boosting B to rest and then ro-
tating so that ¢ moves in the z direction. In par-
ticular, one of the superconvergence relations
may be expressed as a new Lie-algebraic state-
ment about X,, which correlates different helici-
ties:

[Xa, [Xb, mJy]] =§5ab[XC, [Xc,mJy]]. (5)

Here J is the usual angular-momentum matrix,
defined to act on helicity indices only. It follows®
that the matrix mJ, is the sum of a chiral scalar
and the fourth component of a chiral four-vector.
(Also, Eq. (4) says that X, commutes with J,; so
Eq. (5) holds as well for the matrix mJ, .]

One technical device which greatly aids in the
derivation of such results is the use of lab-frame
direct-channel helicity amplitudes rather than the
usual center-of-mass-frame crossed-channel
helicity amplitudes. Consider the scattering pro-
cess a+7mg—~B+7p, with o at rest and B recoiling
with fixed momentum in the z direction. The
Feynman amplitude for this process may be re-
garded as a function MA'Bb,)\aa(q) of the incom-
ing pion four-momentum and is manifestly free
of kinematic singularities in the components of
gu. Also, invariance with respect to rotations
about the z axis tells us that M equals a factor
(g, % iqy)ll'—?\l times a kinematic-singularity—
free function of ¢,, g, and g,* +qy2, all of which
are polynomials in s. If we now choose our co-
ordinate axes so that the pions move in the x-z
plane, the transverse pion momentum g, equals
[-st2—t(s—m *)(s-mpg?) ]'/? times a function of ¢,
and the Feynman amplitude M takes the form

(s, ), (8)

with F free of kinematic singularities in s for fixed ¢. By saturating the dispersion relation for £ with
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single-particle states, boosting and rotating as indicated above, and using Eq. (3), we find (except for
possible subtractions) that

-2 2, -1 2 2 2 2
Fx’Bb,Aaa(s’t)=4Fﬂ Z; (s-m 7) (mB —my )(ma —my )
yo'o
>([(myz__m(xz)(myz_mBZ o t] 3IA- N a, o'(B)[xayB(t)'"]
x[x,(0")] Byda,o(y)[—aa 5 Olx 0] adm(“’[x ()]+ crossed term. )

Here d(6) is as usual exp(- iy ), the crossed term is obtained by replacing s with # and interchanging
a and b, and its sign is plus or minus according as |A-A’| is even or odd. Also, x and 0 are given by*

(m —mﬁz)(myz—maz) +t(my + maz)

COS[XBYa(t)]= (m 2 2)[( 2om 2)2-2t(m 2+m 2)+t2}/2’
m m ma mB o 3

- 2_ 2 2_ 2 2p /2
2mawf t [ (my m )(my m6)+my ]
’

Sin[xaﬁa(t)]=m 2 m 2L(m %-m 22-2t(m Z+m 2)+£2
a a B a B

2m 2%t
Y

(m 2=m 2)(m 2-m 2)’
Y a Y

B

cos[eaﬁy(t)] =1+

2m V-t

Y
2 m 2)(m 2-m
a Y

sin[BQBY(t)] = o) {myzt + (myz_m az)(myz_mﬁz) e,

We will restrict our attention here to the superconvergence relation for the amplitude:

N (5, 0]

2 2
[(s-ma )(s—mB
with [A=x’l odd. (Any matrix Fp, carrying a label T=2 is to be understood as Fp, +F ab—%0apFcc.) 1f
the leading T=2, ¢-channel trajectory has a(t) <0, then this amplitude vanishes faster than 1/s as s
- and therefore satisfies the superconvergence relation

) 222 2. 2
0—{)%3,:("13 my )(ma my )[(my m

X'Bb, xaa T=2

2)(m 2—m 2)+m 2
a Y Y

-3 B, B
em M, P By
’ (7) Y (a) a
X[Xb(a )]Bydo'o [—OaB (t)][Xa(a)]yada)\ [xﬁy (t)]}T=2' (8)
Now let £~0. For mgq>mg the right-hand side of Eq. (8) is of order V—t as ¢~ -0, and we find
0={[lx,, x,,m*]], _™, 1=6m 2-m 2)[X Xy, ]]T 2}31' .

For m  =mg the right-hand side of Eq. (10) has a leading term of order unity as ¢~ -0, but this term
vanishes by parity conservation; the next term is of order v-¢ and gives®

(9)

- (B)_1
0 i et by

g eam L, Ueuma N b g @) (10)

2'Bo’, aco ax

In both Egs. (9) and (10) the matrix elements would vanish automatically for |[A-A’| even; so these re-
sults hold for all A and A’. Also, the d functions in Eq. (10) are nonsingular matrices and can there-
fore be removed by multiplying with their inverses. Finally, Eq. (12) tells us that the first terms in
Egs. (9) and (10) vanish. Thus both (9) and (10) reduce to the desired result (5).
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We will note just one example of the power of
this result. Gilman and Harari® have proposed
an attractive saturation scheme which includes
the 7, p, o, A,, D, 6, and x° mesons. By taking
matrix elements of Eq. (5) between A, states we
find that the 7-A, mixing angle is 90°, which
would forbid the decay p - 27! Thus the algebra-
ic constraints imposed by superconvergence re-
lations cannot be met here without including
more particles in this scheme.

There are an infinite number of other super-
convergent relations, but I have not yet succeed-
ed in expressing any of them as Lie-algebraic
statements about the matrix X,. Perhaps there
is something special about the particular super-
convergence relation which led to Eq. (5).

I am grateful for conversations with S. Fubini
and F. Low.
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IMuch of the effort that has been expended on this
program has been based on the use of off-mass-shell
sum rules derived from the local algebra of currents,
such as those of S. Fubini, Nuovo Cimento 43A, 475
(1966); and R. F. Dashen and M. Gell-Mann, in Pro-

ceedings of the Third Coral Gables Conference on Sym-
metry Principles at High Energies, University of Mi-
ami, 1966, edited by A. Perlmut:ter,u J. Wojtaszek,

E. C. G. Sudarshan, and B. Kursunoglu (W. H. Freeman
and Company, San Francisco, Calif., 1966). In my
opinion these sum rules are of great importance in un-
derstanding the weak and electromagnetic interactions,
but information about the hadron spectrum will have to
come from purely hadronic~mass-shell sum rules de-
rived from soft-pion theorems and Regge asymptotic
behavior. New hope for progress with this more mod-
est program has come from the remarkable quantiza-
tion conditions imposed by soft-pion theorems in the
Veneziano model; see C. Lovelace, Phys. Letters 28B,
265 (1968); M. Ademollo, G. Veneziano, and S. Wein-
berg, Phys. Rev. Letters 22, 83 (1969); S. Weinberg,
to be published.

%3, Weinberg, Phys. Rev. (to be published). Equation
(1) was first derived by the infinite~-momentum method
by Dashen and Gell-Mann, Ref. 1.

3The derivation is the same as given for the matirx
m? by Weinberg, Ref. 2, Sec. IV.

4Despit:e appearances, the contribution of a state y
to F remains finite in the limit My " Mg O My Mg,

5This is the saturated form of the “type-II supercon-
vergence relation” derived by F. Gilman and H. Harari,
Phys. Rev. 165, 1803 (1968). Its algebraic significance
remained obscure because it was derived only for m,
=mg and because its saturated form was expressed in
terms of covariant coupling constants instead of the
matrix X,.
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We propose a new method which summarizes in closed compact form all the implica-
tions of analyticity in a problem with broken symmetry. This method is applied to the
Bethe-Salpeter equation to obtain the broken-SL(2, C) results for the Regge daughter tra-

jectories in a closed functional form:

() 2M

k k

a +k=F(t,t(ak(*’+%)2,w @ ‘*)+M)(ak

(%) ()

+M=1)--- (ak -M +1)),

where F is an analytic function in three variables.

Traditionally, broken symmetries have always been treated by a perturbation expansion in the sym-
metry-breaking parameter. Thus analyticity in this parameter has to be postulated together with other
dynamical assumptions. Our aim is to explore all the implications of analyticity independent of dynam-
ics in the most general form. We propose a method which summarizes all these informations in a
closed compact form. This method can be applied to any representation of a symmetry group.

To illustrate the method, let us consider a simple quantum-mechanical example. If the rotational
symmetry of a Hamiltonian H is broken by an external vector field V, and if H is analytic in V, then it

has the following expansion:

H(V,%) =2, @+ l)Hl(V,r)VlPl(cose),

(1)
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