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A general procedure is outlined for the first-principles calculation of the rate of de-

cay of a metastable phase.

One of the more important outstanding prob-
lems in statistical mechanics involves the rate
of decay of a metastable phase. It would be very
useful to know how to make a first-principles
calculation of, for example, the rate of conden-
sation of supersaturated vapor, the realignment
of a magnetic domain in an applied field, or the
decay of a persistent current in a superfluid. All
of these processes occur when the system under-
goes a statistical fluctuation large enough to nu-
cleate the phase transition. The characteristic
fluctuations for the three transitions mentioned
above are, respectively, a liquid droplet, a clus-
ter of reversed spins, and a vortex ring.

The problem is an old one. Probably the most
important piece of work in the field is the calcu-
lation by Becker and D8ring in 1935 of the con-
densation rate for a supersaturated vapor.’? In
the absence of a first-principles derivation, how-
ever, this semiphenomenological calculation has
been subject to frequent criticism, some modern
authors claiming correction factors of order 10%
or more.® Interest in the nucleation theory has
been further stimulated recently by its apparent-
ly successful application in understanding the on-
set of resistivity in superfluids* and supercon-
ductors.® Here again, existing theories are phe-
nomenological in certain important aspects, and
contain completely unknown factors.

In the following note, we outline a scheme for I

P(n}, {n'Ddt = r(d—: >(7TA)_%N exp( —E;—TE{n}> exp(

the calculation of nucleation rates for a class of
simple but nontrivial models of phase transitions.
The basic ideas seem to be quite general. Work
is now in progress on the practical application of
this scheme to the calculation of the rate of cur-
rent-reducing fluctuations in a superfluid.

We consider a system described by a set of
classical variables 5;,i=1,2,..-N, where N is
the number of degrees of freedom. For example,
7; could be the magnetization at the ith site of a
magnetic lattice, or the order parameter at the
ith position in a superfluid. For the sake of sim-
plicity, we assume that the n’s are real numbers
varying from —o to +. It will greatly simplify
the following analysis if we further assume that,
like an Ising or spherical model, the system un-
der consideration has no internal dynamics of its
own. That is, in the absence of interactions with
a heat bath, the configuration {n} remains fixed.
It turns out to be fairly easy to generalize this
calculation to cases where the motion of {n} is
governed by, say, Newton’s laws or the Ginz-
burg-Landau equation. But such motion is not of
direct interest here because it is always energy
conserving, whereas first-order phase transi-
tions are nucleated by fluctuations which do not
conserve energy.

Next, we assume that, when in interaction with
a constant-temperature bath, the system will
make a transition from {5’} to {n} with a probabil-
ity P per unit time of the form

1

i) exP[_i-Ei("i_"i')Z]’ (1)
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where E{n} is the energy of the system in configuration {n}.® This expression for P is actually quite
general. The symmetrized Boltzmann factors simply describe the probability of various energy ex-
changes with the heat bath. The final Gaussian factor makes it very improbable that two successive

configurations will differ drastically from one another. A is a small parameter inserted in such a

way that, in the limit A -0, the Gaussian factor becomes a § function. The overall factor I' contains
the details of the actual interactions which drive the fluctuations, e.g., spin-phonon coupling or the
like.
Now define p({n}, ¢) to be the probability density for states {n}. This function satisfies the master
equation
o(fn}, t+at) =wolfn}, t)+at [an '+ [an, ' P}, {n Do’} 0), (2)
where

win}=1-at[dn -+ [an, PUnhfmd).  (3)
Equation (2) is equivalent to a Fokker-Planck
equation in the limit of small A. To see this, ex-
pand p{n’} and E{n’} about {n’} ={n} and then keep
only terms to first order in A. The resulting
equation is

2IT[EEE) ] W

It should be emphasized that, once the transition
probability is cast in the form (1), Eq. (4) fol-
lows automatically.

Equation (4) is a continuity equation in 7, space:

ap/at=—2iaJi/ani, (5)

where the N-dimensional probability-current
density is
T ( 1 aE L0 )
6
kT an 811 (6)

The equilibrium solution is

po{n} =expl-(1/kT)E{n}], (7)

corresponding to J; =0 for all ;. The various sta-
ble and metastable configurations occur at the
positions of the local minima of E{n} in the N-di-
mensional 7 space. It has been emphasized in
several previous papers*®7 that, in passing
from one local minimum to a neighboring one,
the system point {n} is most likely to pass across
the lowest intervening saddle point of the func-
tion E{n}. In general, this saddle point, say {7},
will describe a configuration which is every-
where the same as the initial metastable state
except for the presence of a single localized fluc-
tuation, e.g., a droplet or a vortex ring. Once
{n} reaches {7}, it is energetically favorable for
the system to move all the way to the state of
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rgreater stability. It is in this mathematical

sense that {7} nucleates the phase transition.

This equilibrium description obviously tells us
nothing about rates. Having come this far, how-
ever, it is not difficult to discover the N-dimen-
sional—and therefore fully microscopic—gener-
alization of the theory of Becker and D8ring.!
The basic idea is to construct, instead of p,, a
steady-state solution of Eq. (4) in which a finite
probability current flows across the saddle point.

To do this, it is convenient to work with a set
of N variables, &,, which are principal-axis co-
ordinates for E{n} having their origin at the sta-
tionary point {fj}. That is,

N
En}=E+3 25 A £ 2+eee, (8)
no1

where E =E{f}, and the x,, are the eigenvalues of
the matrix 8°E/am;01; evaluated at {f}. By the
definition of {7}, we know that one and only one
of the A’s, say a,, is negative. That is, E dimin-
ishes on either side of the surface £,=0; and, in-
asmuch as system points tend to relax in the di-
rection of decreasing E, points on either side of
£,=0 can be thought of as belonging to different
phases.

Let us assume that the metastable phase whose
relaxation we are computing is described by pos-
itive values of £,. Then we seek a solution of (4)
near the saddle point in which p vanishes for neg-
ative ¢, and a current J, flows parallel to the &,
axis. Somewhat more physically, we imagine
maintaining a steady-state situation by removing
from the statistical ensemble any system which
undergoes a phase transition, i.e., any point
which crosses £, =0, and somehow returning this
system to the ensemble in a metastable configu-
ration.

As long as J, is independent of £,, Eq. (4) will
automatically be satisfied with 8p/06f=0. To de-
termine J,, we return to Eq. (6). Since the
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transformation from the 5’s to the ¢’s is orthogonal, we have

__T/13E  8p
Idet=~3 (%7 ag,‘”ag,)
__Tr1 8E  8p
0= 4<kT agn‘”agn)’ n# 1.

Solving (9) for p, we obtain (for £,>0)

4 - & 1 - 2, N 2
p{g}=_—"lx,{ﬁe FRIRT[ Pt rexp] HE-310,1¢, +3 DAL, )]

9

(10)

(11)

where we have inserted the expansion (8) for the E appearing in the integrand. In order that (11) also
satisfy Eq. (1) for all » other than » =1, we must choose

= [ _]‘_('E 1 g 2)]
J{gt=-Texp| -3 +2n=2xn§n .
Thus,

41 -E{g}/eT (62 A0, 72
pley =2 EEVRT [P (202, ?).

(12)

(13)

The constant J must be fixed by normalizing p. Note that the final factor in (13), the integral over
£,’, rises from zero at £, =0 and levels off at a value (m2T/21x,])? for large enough £,. Assuming
that the dominant contribution to the normalization of p occurs well beyond this region of variation

near £,=0, we have

Jan .-+ [an pfn} =(@a1/T)akT /210 )22 =1,

(14)

where Z, is a partition function in which the sum is performed only over metastable configurations.
To be specific, let E, be the value of E{n} at the metastable minimum, and let xl“” be the eigenvalues

of 92E/3 znianj at this point. Then

2y SO .. [ Oty o BT o BT 7/ O

(15)

where the superscripts (0) denote the restricted range of integration.

Combining these results, we obtain

I VTP ARG W B W
Jleh=-3 ( kT ) zoe"p[ T e z,szngnz)] :

Finally, the condensation rate R must be the to-
tal flux across the surface £,=0:

R:..fdgz...fdgNJ{g}. 17
Equations (16) and (17) constitute a complete
summary of the theory. The evaluation of (17) is
perfectly feasible; and the only reason that it
has not been written out explicitly here is that
the precise integrations required are model de-
pendent. In particular, some of the A’s always
will turn out to be zero because of symmetry
properties of the system, and the associated in-
tegrals must be handled separately. Most impor-
tant among these symmetries is the invariance

(16)

l of E{n} to translations of the critical fluctuation;
e.g., the critical droplet or vortex ring can oc-
cur anywhere within the sample volume. As a
result of this symmetry, R always is proportion-
al to the size of the system.®

We conclude with some comments regarding
the relation of these results to earlier work.
First, note that Eqgs. (15) and (16) combine to
give us an overall factor of exp[-(1/,T)(E-E,)]
in R. The quantity E-E, is the height of the en-
ergy barrier which must be surmounted in nucle-
ating the phase transition. Most of the remain-
ing factors in R are fluctuation corrections to
this energy difference; i.e., they change ener-
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gies into free energies. This observation seems
to justify our use of a phenomenological free en-
ergy for the barrier height in previous calcula-
tions.*®

Finally, the author has argued in another publi-
cation’ that the proper analytic definition of a
metastable state requires its free energy to be a
complex number. In that paper it was conjec-
tured that the imaginary part of this free energy
might be proportional to the condensation rate.
This conjecture turns out to be verified under the
present assumptions, as can be seen by compar-
ing Eq. (4.64) of Ref. 7 and the above expression
for R. The proportionality constant is simply I'.

*Work supported in part by the National Science

Foundation.
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The frequency dependence of phonon-photon double-quantum transitions in MgO: Fe*?
was investigated by using 8.7-GHz photons to detect 9.3-, 4.7-, and 3.1-GHz phonons.
The transition probability for simultaneous absorption of both a phonon and a photon
markedly decreased with decreasing phonon frequency. In the case of 4.7- and 3.1-GHz
phonons, a new type of phonon-photon transition was observed.

We have investigated the frequency dependence
of phonon-photon double-quantum transitions in
Fe*2-doped MgO by using 8.7-GHz photons to de-
tect 9.3-, 4.7-, and 3.1-GHz phonons. The dou-
ble-quantum detection of 9.45-GHz phonons with
9.21-GHz photons was first observed by Shiren!
and later discussed in a review article by Tuck-
er.? In addition to the type of transition observed
by Shiren! at a magnetic field where the Zeeman
splitting of the M =+1 levels satisfies the reso-
nance condition for the absorption of both a pho-
non and a photon, we have observed a new transi-
tion at a lower magnetic field.

Longitudinal microwave phonons were generat-
ed with a CdS transducer deposited on the end of
a (100)-oriented rod inserted in a coaxial type of
reentrant cavity, which could be tuned to reso-
nate in overtone modes at about 3.1, 4.7, and 9.3
GHz. The opposite end of the rod was located in
a sapphire-filled TE,,, rectangular cavity reso-
nant at 8.7 GHz. It was experimentally verified
from the polarity of the detected echoes that the
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double-quantum transition produced an addition-
al absorption of microwave photon power when
0.5-usec phonon pulses were inside the 8.7-GHz
cavity.

Figure 1 (top) shows the experimental magnetic
field dependence of the peak power (or pulse
height) of the first phonon echo detected by pho-
ton-phonon double-quantum transitions in the 8.7-
GHz cavity. For 9.3-GHz phonons, this echo is
largest at 1.95 kG, where the Zeeman splitting of
the M =+1 levels shown in the figure (bottom) is
equal to the sum of the photon and phonon fre-
quencies. This transition, where both a photon
and a phonon are absorbed, is here designated
the “high-field transition.” The asymmetric line
shape is characteristic of a strain-broadened
line.®* In the case of 4.7-GHz phonons, high-
field transitions for both the fundamental and the
second harmonic can be seen. The fundamental
is observed at 1.45 kG, which corresponds to the
4.7-GHz phonon frequency, and the second har-
monic at 2.0 kG. The height of the second har-



