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The electronic contribution to the force constants of lattice vibrations in insulators is
studied in a Green's-function formalism. Results of an application of the method to LiF
are given where the one-electron spectrum has been treated in the tight-binding approx-
imation.

During the last years a number of articles have
been published on the calculation of phonon dis-
persion curves for metals. ' ' In contrast to this
only a few attempts have been made to treat in-
sulators by taking the contribution of the elec-
trons to the force constants explicitly into ac-
count. ' The difficulties associated with an ap-
plication of the Born-Oppenheimer approximation
to insulators have, instead, been avoided by
pointing out the formal equivalence between cal-
culations using electronic states and phenomeno-
logical force -constant models. "~" Numerical
calculations were so far based on these models.

This Letter proposes a systematic way for the
derivation of the dispersion relations in the har-
monic Born-Oppenheimer approximation and
gives preliminary results for the application of
the method to LiF.

According to Born and Huang'~ the electronic
contribution to the harmonic interatomic force
constants is given by

the electronic Hamiltonian:

The summation runs over all electrons and the
term i =j is excluded from the second sum. Hel
depends on the lattice configuration through the
electron-ion potential V(r) The. Coulomb inter-
action between the electrons is denoted as v(r
-r'). The derivatives in formula (1) are to be
taken at the equilibrium position of the ions.

We specify the average over the electronic
Hamiltonian to be performed with the ground-
state electronic wave function. Thus, tempera-
ture dependence is not included in the treatment
although there is no principal objection to a gen-
eralization of the formulas using temperature-
dependent Green's functions.

With the aid of the Hellman-Feynman theorem
Eq. (1) can be rewritten as

d d

dR( j) dR( j ') el
'

p( jj') = [d/dR(j)](dH /dR( j')).

Introducing the electronic Green's function by

G(12) = (-i) (T[g(1)$~(2) ]),

(2)

Here the index j comprises the number of the
unit cell l, the number of a particular lattice par-
ticle in the cell s, and the direction in which this
particle is displaced from equilibrium n. d/dR(j)
denotes the corresponding derivative, and Hei is

where the variables 1 and 2 stand for space and
time coordinates of the respective particles, T
means time ordering of the quantities in the
brackets, and $(1) and g~(2) are fermion annihi-
lation and creation operators in the Heisenberg
picture, we get from Eq. (2)

dG(11+) dH d d
el

dR(j) dR(j') dR( j) dR( j') el

Here the symbol 1+ means that an infinitesimal time argument &)0 has been added to t, to insure the
correct order of the field operators in the Green's function.
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The first term of Eq. (3) can be calculated by considering the equation of motion for the Green's
function:

LG(11') = 6(1-I')-i fd~ v(r-r )G(121'2+) ~

2 2 t~=t2

Here L is a single-particle operator defined by

L = iW/dt-(8 ~/2m)d /dr~-v(r),

(4a)

G(1234) = (T[g(1)g(2) g~(3) g~(4)])

is the two-particle Green s function. We now differentiate Eq. (4a) with respect to R(j) and solve for
G(11') by using the adjoint equation

L G(1 "1')=5(1"-I')-ifd7 v(r-r )G(1 "s 1'2) I

2 2
' tt. (4b)

If we define the mass operator I of the electronic system by the relation

(-i)fd~, v(r-r~)G(121'2+) = fd2M(12)G(21'),

the following result is obtained:

! dl" G(11"), G(1 "1')+ d2 . G(21')
dR(j) J dR( j) „dR(j)

U(121 '2') = (-i)v(r, -rm) [5(1-1')5(2-2') -5(1-2 ')5(2-1 ') ],

we get for the lowest order terms

dG(l 1 ')/dR( j) = fd2 G(12)[dV(rm)/dR( j)]G(21') + fd2d2'd3d3' G(12)U(233 '2') G(2'1')d G(33 ')/dR( j) + ~ ~ ~ .
We truncate the series after the second term on the right and insert the approximate expression into
Eq. (3). If we define the effective electron-electron interaction by

Since the mass operator can be expressed in terms of one-electron Green's functions and the Coulomb
interaction between the electrons, Eq. (5a) is really a linear integral equation for the electronic re-
sponse dG(11 )/dR(j). By expanding the mass operator in terms of one-electron lines and the antisym-
metriz ed electron-electron interaction,

W(121'2') = U(121'2') + fd3d3 'd4d4' U(1233 ')G(34) G(3 '4') W(44'1'2'),

we get for the force constants

y(jj')+i (d~G(ll+), V(r)

=; 'd."(".G(12)'"'. G(21 )dR( j) dR( j')

,dV r+ d7'd74d2d3d2'd3' . G(12)G(31+)W(232'3')G(2'4)G(3'4+)
dR(j )

So far we have not specified the potential and the
wave functions. The formulas derived apply to
any substance for which the Born-Oppenheimer
approximation holds.

In order to use Eq. (6) as a basis for the ex-
plicit numerical calculation of the force con-
stants of LiF,"the single-particle approxima-
tion was made. The electronic spectrum then en-

! ters the calculation via energy leVels and eigen-
functions of an approximate one-electron Hamil-
tonian. Following the procedure of Slater and
Koster, ' the energy values were determined to
give a band structure for the F 2P valence and
the Li 2s conduction band of LiF (see Fig. 1)
that reproduces the main features of the experi-
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FIG. 1. Valence and conduction bands of LiF.

FIG. 2. Phonon dispersion curves for LiF in the (1,
1, 1) direction. Solid line: this paper. Broken line:
results by Schroder and Nusslein.

mental ref lectivity spectrum given by Roessler
and Walker. " The electron-ion potential was set
up as a phenomenological potential. It includes
that part of the electronic response that can be
described by a rigid motion of the electrons with
the displaced ion. The potential for each ion con-
tains two parameters. Accordingly, Kellermann's"
coefficients were used for the calculation of the
Coulomb interactions between the ions. The ma-
trix elements were calculated in the tight-binding
approximation based on free-ion wave functions
given by Clementi. " The orthogonalization pro-
cedure of Lowdin" was employed to first order
in the overlap matrix elements and three- and
four-center integrals were neglected.

By assuming the potential to be a superposition
of the contributions of the different ions, the av-
erage over the second derivative of V in Eq. (6)
can be eliminated because of the symmetry rela-
tion for translational invariance:

Z„fm(ii ')+ V (ii ')1=0,

where p " (jj') is the Kellermann coefficient.
Figure 2 shows dispersion curves obtained for

the (1, 1, 1) direction by our procedure. Two po-
tential parameters which correspond to the
screened ionic charges were used to fulfill the
Lyddane-Sachs- Teller relation. The two other
parameters describing the structure of the rigid
part of the electronic charge were chosen to give
good mean agreement of the calculated curves

with the results of Schroder and Nusslein" for 0
K For room temperature their model describes

quite well the neutron-diffraction data measured
by Dolling et al.~

The calculated result depends sensitively on
the correct band structure. The dispersion
curves did not give stable solutions, for instance,
when the value of the energy gap was diminished
from the experimental value of 13.6 eV by about
2 eV. For the (1, 0, 0) direction the result de-
pends critically on the core regime of the ion po-
tentials. Our simple model potential which ne-
glected the electronic structure near the core did
not yield satisfactory results in both symmetry
directions. It is hoped, however, that an im-
proved phenomenological potential and a better
approximation for the one-electron wave func-
tions will help to eliminate these shortcomings.

The present calculation, the results of which
we have sketched, served as a test for different
potential models. It also provided insight into
the interrelation of phonon dispersion curves and
the parameters of phenomenological force-con-
stant models on one side and properties of the
electronic states on the other. ~'
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