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Starting from a zero-sound approach, a calculation of the spectral function of the cur-
rent-current correlation, which is valid at short wavelengths and high frequencies, is
given for classical liquids. The theory is used to explain results of neutron inelastic
scattering in liquid argon.

Recently, Pines' has advanced arguments for
the existence of a zero-sound mode in liquid He'
and He' over a wide temperature range —a range
in which neither Landau's theory of Fermi liq-
uids is applicable (for He') nor He' is a superflu-
id. These considerations led Pines to conjecture
that a zero-sound mode at short wavelengths and
high excitation frequencies might be a quite gen-
eral liquid property. This suggestion of Pines
has hitherto not been investigated in any quantita-
tive manner for the case of classical liquids.
Rather, experimentalists have used phenomeno-
logical models'~' to explain neutron inelastic
scattering results.

The purpose of this Letter is twofold: (i) to
present experimental data for the spectral func-
tion of the current-current correlation function
in liquid argon, and (ii) to develop a theory
based on Pines' suggestion and compare its con-
sequences with experiment. The theory is rea-
sonably successful and opens up the possibility
for further applications.

In contrast to the hydrodynamic case, the re-
storing force responsible for the zero-sound
mode is the average self-consistent field of all
the particles acting in concert, as for plasmons
in an electron liquid. The average polarization
potential corresponding to this restoring force is
defined by

1(q, ~) = 4(q)&p(q, ~)&, (1

where g(q) is to be determined later and (p(q, u))
is the Fourier transform of the average fluctua-
tion in the particle density. The density-density
response function is given by'

x„(q,~)

1-4(q)x„(q,~)

Here Xsc(q, &u) is a measure of the response to
both the external and the polarization field. The
problem is to determine Xsc(q, ~) and g(q).

We make the physical assumption that Xsc(q, ~)
is determined by the single-particle motion. As
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is well known, this motion resembles that of a gas of free particles for large q values, whereas for
smaller q values it is both diffusive and vibratory in nature. The imaginary part of ysc is then related
to the dynamic form factor Ss(q, &u) for the self-motion through the equation

Im)i (q, (u) =-mn((u/k T)S (q, v),
SC B s

(3)

since h&«kBT for the frequencies of interest. The quantity n is the number density. For a free gas,
I

neglecting recoil, one has Ss&(q, &u) = (M/q 2mkET)2exp(-M~ /2q kBT). Substituting this in (3) and

making use of the Kramers-Kronig relation, one obtains

Rey (q, &u) =-(n/k T)(1+i(Mm&e /2q k T)'e px(-M&e /2q k T) erf[i(M+ /2q k T) ]).~ 2 2 —: 2 2 2 2 2

sc ' B B B (4)

On the other hand, for finite frequencies and small q values one has' Ss(q, &u) = (kBTq'/2M&v')f(v)+O(q'),
where f(cu) is the Fourier transform of the normalized velocity autocorrelation function. Using the an-

alytic representation' of f(u) as computed by Rahman, ' one similarly obtains, in the small-q limit,

Re)i (q, v) = (nq D/hark T)[(-iw/&u) exp(-v /&u ) erf(i&@/&u )-A'&ud- 2 2 2

SC B 0 0 m

+2A'(o f dy sin(2&uy/+ )(1+y ) ],
0 tn

where the parameters' occurring in f(m) are &u0-0.25kBT/I, &u =0.37kBT/h, and A'=61. .48(a/kBT)2
and D is the diffusion coefficient. It might be mentioned that the above separation of ysc(q, a!) for
large and small q values is, in principle, not necessary if one has a complete knowledge of Ss(q, &u),

i.e. , of self-motion.
Our next problem is to determine g(q) of Eq. (1). For this purpose we approximate the non-random-

phase-approximation terms in the equation of motion for the density fluctuation p- in the manner sug-
q

gested by Singwi et al. ' for the case of an electron liquid. This procedure takes approximately into
account local field corrections which in the present case, where we are dealing with a hard-core po-
tential, are of primary importance. The expression for g(q) obtained in Ref. 8 can be written in the
form

4m dy(r)
P(q) = ——, [sin(qr)-qr cos(qr)] g(r) dr.

dr

In the present case p(r) is the 6:12 I ennard-Jones potential and g(r) is the equilibrium pair-distribu-
tion function. Equation (6) has been found' to be a reasonable approximation for large values of q.
For small values of q, on the other hand, a better approximation for g(q) is

g(q) = —, [sin(qr)-qr cos(qr)] g(r) =rdy (r) 1 d'y (r)
3q 0 dr 2 dr'

which, from the equation of motion' for pq, can
be shown to be exact in the limit q-0. We are
unable to estimate the correction to Eq. (6) which
will bring it into agreement with Eq. (7) in the
limit of small q. However, it was found that this
correction is of importance only in a narrow re-
gion of q, around q = 1.8 A ', where l((q) of Eq.
(6) is large and negative. We have, therefore,
added a constant term to Eq. (6); the value of the
constant (0.6kBT/n) was obtained by requiring
that the theory should reproduce the height of the
first peak of the structure factor S(q) as obtained
by Rahman. '

Having thus obtained expressions for gsc and

!
g(q), we can calculate lm)i(q, cu) from Eq. (2) and
hence S(q, &u). We have evaluated numerically the
function &u'S(q, &u), which is the spectral function
of the longitudinal current-current correlation,
as a function of ~ for a, set of q values ranging
from 0.2 to 4 A '. In the computations, the val-
ues of g(r) obtained by Rahman' were used. For
each value of q the spectral function has a maxi-
mum. In Fig. 1(b) we have plotted the frequency
(denoted by &@max) corresponding to this maxi-
mum as a function of q. In the same figure the
crosses denote the experimental values" of
Skold, and the solid circles are the computer re-
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FIG. 1. (a) S(q) vs q, and (b) cdm~ vs q in liquid
argon. The crosses are the results based on the ex-
perimental data of Skold and Larsson (Ref. 10) and the
solid circles are those of Rahman (Ref. 11) based on
machine computations. The theoretical curves marked
G are the results of the present calculations using the
gas model for )(~ [Eq. (4)] and |t)(g) of Eq. {6) with the
constant correction discussed in the text, assumed
valid for all q values. The curves marked D are the
results of the present calculations using the expres-
sion valid in the small-q limit for )('~~ [Eq. (5)] and

g(q) of Eq. (7). The two regions have been smoothly
joined by the dotted curve. The present results and
the results of Rahman are for 76 K, while the results
of Skold and Larsson are for 94'K.

suits of Rahman. " In Fig. 1(a) the solid curve
gives the calculated structure factor and solid
circles are the results of Rahman. " The calcu-
lated spectral function as a function of ~ for dif-
ferent q values also agrees reasonably well with
Rahman's computations. " The second moment
relation is exactly satisfied by our S(q, &u). In
view of the fact that, except for the comparative-
ly minor correction to Eq. (6), there are no ad-
justable parameters in the theory, the agree-
ment with the experimental results must be con-
sidered rather good. It may be noted that the
minimum in a&m~(q) and the maximum in S(q)
occur at the same value of q, which is also the
case in the experimental data. The shift of the
theoretical curves relative to the experimental
curves probably arises from our lack of knowl-
edge of the precise q dependence of the correc-
tion term in g(q) of Eq. (6).

Recently there has been considerable inter-

est"~" in the plot of ~ vs q arising out of a
suggestion by Zwanzigi' (inspired from hydrody-
namic analogy) that the Fourier component of the
current should have the characteristics of a col-
lective coordinate. It must, however, be borne
in mind that only in the limit q - 0 can such a
plot be unambiguously identified as the disper-
sion curve for the collective modes.

The plateau of the curve of Fig. 1(b) in the re-
0 0

gion 2.5 A '- q- 3.4 A ' has a striking resem-
blances' to that in the dispers ion curve in liquid
He II. In the present formulation this plateau is
the result of the local field correction typical of
a hard-core potential, and therefore its occur-
rence should be a very general property for liq-
uids with an interatomic potential which has a
hard core. It would be of considerable interest
to test the present theory against experimental
data" on inelastic neutron scattering in He I.
The success of the present approach also prompts
us to calculate the pair correlation function in
liquid He' in a self-consistent manner, analo-
gous to the case' of an electron liquid.

Our thanks are due to Dr. A. Sjolander for in-
teresting discussions, and to Dr. A. Rahman for
making his computer results available to us.
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The electronic contribution to the force constants of lattice vibrations in insulators is
studied in a Green's-function formalism. Results of an application of the method to LiF
are given where the one-electron spectrum has been treated in the tight-binding approx-
imation.

During the last years a number of articles have
been published on the calculation of phonon dis-
persion curves for metals. ' ' In contrast to this
only a few attempts have been made to treat in-
sulators by taking the contribution of the elec-
trons to the force constants explicitly into ac-
count. ' The difficulties associated with an ap-
plication of the Born-Oppenheimer approximation
to insulators have, instead, been avoided by
pointing out the formal equivalence between cal-
culations using electronic states and phenomeno-
logical force -constant models. "~" Numerical
calculations were so far based on these models.

This Letter proposes a systematic way for the
derivation of the dispersion relations in the har-
monic Born-Oppenheimer approximation and
gives preliminary results for the application of
the method to LiF.

According to Born and Huang'~ the electronic
contribution to the harmonic interatomic force
constants is given by

the electronic Hamiltonian:

The summation runs over all electrons and the
term i =j is excluded from the second sum. Hel
depends on the lattice configuration through the
electron-ion potential V(r) The. Coulomb inter-
action between the electrons is denoted as v(r
-r'). The derivatives in formula (1) are to be
taken at the equilibrium position of the ions.

We specify the average over the electronic
Hamiltonian to be performed with the ground-
state electronic wave function. Thus, tempera-
ture dependence is not included in the treatment
although there is no principal objection to a gen-
eralization of the formulas using temperature-
dependent Green's functions.

With the aid of the Hellman-Feynman theorem
Eq. (1) can be rewritten as

d d

dR( j) dR( j ') el
'

p( jj') = [d/dR(j)](dH /dR( j')).

Introducing the electronic Green's function by

G(12) = (-i) (T[g(1)$~(2) ]),

(2)

Here the index j comprises the number of the
unit cell l, the number of a particular lattice par-
ticle in the cell s, and the direction in which this
particle is displaced from equilibrium n. d/dR(j)
denotes the corresponding derivative, and Hei is

where the variables 1 and 2 stand for space and
time coordinates of the respective particles, T
means time ordering of the quantities in the
brackets, and $(1) and g~(2) are fermion annihi-
lation and creation operators in the Heisenberg
picture, we get from Eq. (2)

dG(11+) dH d d
el

dR(j) dR(j') dR( j) dR( j') el

Here the symbol 1+ means that an infinitesimal time argument &)0 has been added to t, to insure the
correct order of the field operators in the Green's function.
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