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correspond to a weaker dependence of plasma
frequency on wave number than that given here;
such real metal effects could modify our conclu-
sions concerning the resonant peaks, but we
have adopted a free-electron model because of
its analytical simplicity and utility as an exam-
ple.

In conclusion we wish to point out that Eqs. (3)
are quite general and apply to any system pos-
sessing longitudinal electric polarization waves
which are noninteracting with the transverse
electromagnetic waves. Thus, for example,
they may be applied to a polar crystal such as
an alkali halide which possesses a longitudinal
optic mode.
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For the first time, angular-correlation functions of diatomic rotators in solids have
been determined experimentally using vibration-rotation spectra. As samples we used
QH and OD in KCl. Maxima and minima of the correlation function show an isotopic
Stllft.

Random rotation or tumbling of diatomic mole-
cules in gases, liquids, or solids represents a
stationary process. ' In accordance with the theo-
rem of Wiener and Khintchin, the angular auto-
correlation function can therefore be calculated
as the Fourier transform of the normalized ab-
sorption observed in the rotation spectrum or the
vibration-rotation spectrum. For the vibration-
rotation spectrum, the angular autocorrelation
function is given by

i I(cu) coscutdcu = (u(0)u(t)) cos(coot)

= 3(cosB(0) cos&(t)) cos&uot,

where 1(&u) indicates the normalized absorption,
~0 the frequency corresponding to the vibrational
transition, and

u(t) = [sin0(t) cosy(t), sin8(t) sing(t), cos&(t)]

the unit vector in the direction of the oscillating
electric dipole. This equation has been derived
by Gordon' and Brot' for liquids and gases. The
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correlation functions evaluated from our spectra
of HCl and HBr in CC14 are in good agreement
with those of CO in CC14, C,H,4, etc. , determined
by Gordon' from spectra of Josien and Bulanin. '

The rotation or tumbling of OH and OD in
alkali halides has been observed by dielectric re-
laxation, ' and ultraviolet and infrared spectros-
copy. ' All measurements indicate a strong influ-
ence of a cubic crystal-field potential acting on
the diatomic molecule as described by Devon-
shire' and Sauer. ' Therefore we expected to find
a special behavior of the angular-correlation
functions of diatomic rotators in crystal fields.
We have measured the vibration-rotation spectra
on OH and OD in KC1 near 3700 and 2700 cm
at room temperature. The corresponding auto-
correlation functions, superposed by the vibra-
tional decay function, are shown in Fig. 1. Group-
theoretical considerations demonstrate the appli-
cability of the above correlation functions for ro-
tators in liquids and in local fields of cubic sym-
metry. " For short times (t&0.5x10 "sec) the
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FIG. 1. Angular autocorrelation functions of OH and OD- in KCl determined from the vibration-rotation spec-
tra measured at room temperature.

correlation function can be approximated by

(u(0) u(&)) =1 (I/kT)t -+higher terms,

with I the moment of inertia and T the absolute
temperature. In this approximation the correla-
tion function is entirely defined by the statistics
of the angular momentum and not yet influenced
by collisions. For long times (t) 5&10 "sec),
the correlation functions approach the exponen-
tial decay observed in magnetic resonances and
characteristic for Markoff processes. ~ " ' In

the transition range between 5x10 "and 0.5
&10 "sec the correlation function depends
strongly on the interaction of the rotator with its
vicinity. Here the correlation functions of rota-
tors in gases, liquids, and crystals differ con-
siderably. ~"~' ~" The most remarkable features
of the correlation functions of Fig. 1 are the
maxima and minima present in the transition re-
gion. The time differences corresponding to
these maxima and minima show an isotopic shift
for OH and OD . They are proportional to the
square roots of the moments of inertia, as shown

in the following table:

textr-extr
(10 ~ sec)

Moment of inertia (Ref. 16)
(10 40 cgs)

OH

0,850
0.875
0.945

OD

1.17
1.15
1.22

Ratio

1.37
1.32
1.29

OH

1.53
(ratio) f = 1.37

OD

2.91

For comparison, the rotational time constants
~ = (IjkT)"' based on the moments quoted in the
literature' are marked in Fig. 1. Theory»
and experiment'&' support the assumption that the
potential minima for the rotator lie in the (100)
and the maxima in the (111)directions. Infrared-
absorption measurements by Chau, Klein, and
Wedding" suggest a librational motion of the ions
OH and OD in the host crystal. If we assume
the time differences between the maxima to cor-
respond to the half-periods of the librations, we
find the following average libration frequencies

at room temperature:

for OH, 381 cm '; for OD, 287 cm

The frequencies reported by Chau, Klein, and
Wedding for 4.6'K were 293 and 225 cm ', re-
spectively. However, we cannot yet decide about
an eventual contribution of quasifree rotations to
the correlation functions, but we intend to solve
this problem by variation of temperature. "

We hope that the angular-correlation functions
of diatomic rotators obtained from vibration-ro-

89



VOLUME 21, NUMBER 2 PHYSICAL REVIEW LETTERS 8 JULY 1968

tation spectra will provide more valuable infor-
mation on librations and hindered rotations.

We wish to thank Professor W. KKnzig and his
group for helpful discussions and for growing the
crystals.
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Two processes are observed in NdC13 whereby two excited Nd + ions undergo a transi-
tion leaving one ion in a higher excited state and the other in a lower state. In one case
the initial states are the same, namely F&&2, in the other they are different, E&2 and

If5/2 In both cases fluorescence decays of initial and final states are measured, allow-
ing the determination of the rate equation for the processes.

A number of recent papers' ' have been con-
cerned with processes whereby two ions in ex-
cited states annihilate, leaving one of the ions in
a higher excited state and the other in a lower
state. The evidence for such processes is the
emission of light from single-ion excited states
at energies much more than kT greater than the
excitation energy, or the generation of free
charge carriers. When the efficiency of the pro-
cess is relatively high, a change is observed in
the decay of the states involved. '~' The emis-
sion from higher excited states can also result
from simultaneous and sequential two-photon ab-
sorption of the excitation by single ions. ' It is
necessary to perform fluorescence decay studies
or to carry out careful wavelength determina-
tions' in order to ascertain which of the process-
es is important.

This Letter reports determination of the rate
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dNl ~N
12N1N2 + r34NSN4

Tl

dN2 ~N= —~—r2,N2N, +r N N,
T2

dN,
+ r12N1 N2-r, 4N, N4,

T$

dN4 = -~+rl N, N -r
74

(4)

equations for two processes of Nd'+ in NdCl„
one in which an ion in W annihilates with an ion
in R and another in which two ions in R annihi-
late. The energy levels' "of Nd'+ and their
spectroscopic notation are shown in Fig. 1.

I. The rate equations. —The lowest order rate
equations which can describe excited-state anni-
hilation are given, for pulsed excitation, by


