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We prove low-energy theorems for Compton scattering, which are exact when the elec-
tromagnetic interaction is included up to fourth order and the strong interactions to all
orders. These theorems give the terms of order co2ln(d, where ~ is the photon c.m. mo-
mentum, besides establishing the classical low-energy theorem to the order e 4.

(1) Introduction. —The classical low-energy theorems' for Compton scattering give the exact scatter-
ing amplitude up to terms of the first order in the photon frequency (d. These theorems treat electro-
magnetism up to second order, i.e. , O(e~) and strong interactions to all orders. These theorems were
recently extended to higher orders in ~. We propose here to extend these results in yet another di-
rection, i e , . th. e inclusion of electromagnetism up to the fourth order, i.e. , O(e ). If certain limits
like Low's "infrared limit'" exist up to a certain order higher than e, then these classical theorems
would be exact for the real part of the scattering amplitude up to that order. In fact our work shows
that such is the case at least up to O(e ). Besides this result, which extends the validity of the known

theorems to O(e4), we also obtain new theorems which give terms of the order uP 1n&u.

Let (c, d IT(s; cos&) la, b) be the Compton scattering amplitude which describes, in the c.m. system,
the process

target (a)+photon (b) -target (c)+photon (d),

where s is the c.m. energy and ~ the c.m. scattering angle. Here a, 5, c, and d refer to the respec-
tive helicities. Further, let

(c, d I T(s; cos6) la, b) = [cos-,'8] [sin-,'8] (c, d I T(s; cos0) la, b),
}&+LLt, t . , fW-p I

where & =a-b, p =c-d, and let v=(s-mt )/2mt, mf =target mass. We then have the following theo-
rems for the pion Compton scattering:

Re(0, 1 I T(s; cosa) IO, 1)= -2eR-2e*(1-cos&) —+ + ~ (5-cos[)t) v~ lnv+ O(v'),

Re(0, -1(T(s;cose)t0, 1)=-2e +2e (I+csee)(—)+ (I-cone)v lnv+0( ), 0 cene,

and

(2)

Im(0, +1 IT(s; cos&)10, 1)= v 1- —— +O(v').
e' 2v

37rm m

It is interesting also to note that for the forward-scattering case, i.e. , ~=0,

Rs(0, 1lT(s;1)t0, 1)=-2e +( + ) 'ln +O(v ) (4)

[mf =pion mass in Eqs. (1)-(4)]. One can obtain similar theorems for nucleon Compton scattering. We
only mention here the results for the forward direction:

4
—,
' Re[(-,', 1 I T(s; 1) I —,', 1)+(-—,', 1 I T(s; 1) I --,', 1)]= -2eR+ +~ vi lnv+ 0(vs),

R Re[&-R, 1 IT(s; 1) I
—R, 1)-(R, 1 IT(s; 1) I R, 1)]=2p v+0(vR lnv),

—,'Im[(--,', IlT(e;1)t--', , I)+(-,', l(T(e;1)t-', , I)]= ~ (I——)+0( '),

4
—, Im[(--, , I IT(s;1)t--,', 1)-(-,, l(T(~; l)t-, , I)]= I+ ) O(v ),127tMs e

(5)
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where M is the nucleon mass and p, the anomalous nucleon magnetic moment. It is worthwhile empha-
sizing that the theorems for the forward spin-averaged amplitudes for both the ny and Ny case have
the same form, the extra factor 2M being due to the standard difference in the normalizations of the
fermion and boson states. Fourth order in e spin-& Compton scattering in the pure quantum electrody-
namics (i.e. , absence of strong interactions) was considered by Corinaldesi and Jost» for the spin-0
case and by Brown and Feynman» for the spin--,' case. Their expressions for do/dQ are in agreement
with our theorems.

In order to obtain the above results we work in an S-matrix framework. Recently, classical theo-
rems have also been rederived in this framework. We use unitarity, crossing, and only those fixed-
cos8 representations for which the convergence is assured by Froissart-Martin' type of bounds. In

particular one does not have to assume a Regge-type asymptotic behavior.
(2) Pion Compton scattering. —This is described by two amplitudes A(s; cos8) and B(s; cos8) given by

(0, 1 I T(s; cos8)10, 1)=2(s-m»)»A(s; cos8)

and

(0, -1 I T(s; cos8) IO, 1)= [(s-m»)»/(2s)]B(s; cos8)

(m =pion mass) which are kinematic-singularity free and thus can have only dynamical singularities.
These singularities in s for fixed cos8 can be easily worked out for the amplitudes A and B. They are,
besides the contribution of a single-pion intermediate state, (i) a cut on the real axis for s & m» due to
the direct channel, (ii) a cut on the real axis for s & m» due to the crossed vy channel, and (iii) a cut
on the real axis for s - 0 due to the mm- yy channel intermediate states. The least massive state al-
lowed here is a two-pion state. It is important to note that only the nonzero-mass intermediate states
are allowed in the t channel as we are working only to O(e~), and hence the singularities arising from
these exchanges are a finite distance away from s = m~.

We further note that the major axis a of the Lehmann ellipse for both A and B is given by a -1+2m»/
s for s -~, and we can therefore, following Froissart-Martin type of arguments, establish the follow-
ing asymptotic upper bounds:

IA(s; cos8) I & const(ln»s)/s, for 8=0, v;

IA(s; cos8) I & const(ln»~»s)/s"4, for v & 8 &0.

The similar bounds for B(s; cos8) are worse by a factor s.
We also note that both A and B are even under s, u crossing for t fixed, which leads to

A(s; cos8) =A(s; cos8 ),

where

(s-m»}»
s —= s (s, 8}=2m*-s+ (1-cos8),

C C 2s

(s-m')[3s+m»+(s-m») cos8]sin»8cos8 =- cos[8 s, 8 ]= cos8+
c c ' [s+m*+(s-m') cos8]'

and similarly for B(s; cos8).
The single-pion contributions to A and B, to be calledA~ and B", respectively, are

7r 2 22
A (s; cos8) = '

»
= »», u-=2m -s+v B (s; cos8) e 2 (s-m ) (1-cos8}.4m~ s-m~ u-m~ ' 2s

(10)

(12)

Using the above information about the dynamic singularities, asymptotic bounds, and crossing, we
can write the following representation for A(s; cos8):

862

1 '~ ImA(s', cos8) ImA(S (S', 8); cos8 (s', 8))
[A(s; cos8)-A (s; cos8)]=— ds', +, » -=1».'(s', s)ds'. (13)~-mi s s s + s-2m m'
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This representation is crucial for obtaining the various low-energy theorems. Using the classical low-
energy theorems and noting that ImA(s'; cos8) for s") s') m2, where s" is the lowest multiparticle
hadronic state threshold, is given completely by the intermediate wy state, we can calculate ImA(s;
cos8) for s near m~. Since the Compton scattering amplitudes up to O(e~) have a power series expan-
sion in (s-ma) as s -ms, such a calculation would lead to a power series form for ImA(s; cos8) also.
The result of this calculation is given in Eq. (3) in terms of Im(0, 1 IT(s; cos8) IO, 1), which is related to
ImA(s; cos8) simply by the factor 2(s-ma)s. It can be easily verified that the calculated ImA(s; cos8) is
such that the representation (13) converges at the lower limit of the integration.

In order to calculate ReA(s; cos8) by substituting the power series expansion of ImA(s; cos8) in the
above representation (13), we need the following results:

f, I(s ', s)ds' = f, f(s '; s)ds'+ O(1), s -m',

s'-m 2" " (s'-m ) ds'2n
ds'=O(1) and t, ~ =O(1), s-m',s'-s Jm2 S + S-2PPl

where m2(A &s and n -1.h

Using these results we see that if we are interested in calculating the terms in A(s; cos8) which dom-
inate O(1) terms as s -m~, then it is sufficient to know ImA(s; cos8) correct up to terms of O(1) as s
—m'. This we know from' Eq. (3) obtained before. This then leads to Theorem (1). We thus see that
the scattering amplitude up to the terms of order v Inv is well defined and does not suffer from the in-
frared divergence problem encountered in higher order electrodynamics. This is as it should be,
since we know from an analysis of the Bloch-Nordsieck' type that the infrared-divergent term in the
Compton amplitude has a coefficient v~(1-cos8) as v-0.

(3) Forward nucleon Compton scattering. -Let

T (v) = (-,', 1 I T(s; 1) I —,', 1)

and

T (v) = (--,', 1 I T(s; 1) I --,', 1)

which have the crossing property

T (v) =T (-v)
a P

and have the Froissart bounds

(v) I & constvln~v.
a, p v-~

Let us also note the single-nucleon intermediate-state contribution Te p+(v) to these amplitudes:

T (v) =-e /M+2p v,
N 2 2

(14)

(15)

N 2 2T (v) =-e /M-2p v.a

Further, the forward amplitudes Tp(v)/v~ and Te(v) are kinematic-singularity free 'Using .the above
information we can write the representation

vI '~dv' ImT (v') ImT (v')
T (v)-T (v) =— ~, +
P P 7Tgo V, V'-V V +V

863
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This on again using crossing gives

v~ "~dv' ImT (v') ImT (v')
T (v)-T (v) =— ~, +a P

a a 7T 0 V V —V v'+ v

It may be pointed out that we could not have written down this representation for T~(v} directly without

using crossing and the representation (17) for Tp(v) since we did not, a priori, know [T~(v)-Tz (v)]/
v to be kinematic-singularity free.

We can again, as in the last section, using classical low-energy theorems obtain the theorems for
ImT~(v) and ImTp(v) up to terms O(v~}. These together with the above representations lead to the the-
orems on real parts of Tz(v) and Tp(v) given by Eqs. (6) and (6).

(4) Concluding remarks —.(i) If we wish to extend the present theorems to O(e'), we will have to con-
tend with the 2y intermediate state in the t channel among other complications. The presence of this
state makes the Lehmann ellipse shrink completely to real axis. We would therefore no longer be able
to establish the upper bounds at least by using the standard method.

(ii) It appears that for an arbitrary-spin target the following conjecture may be true:
Conjecture: Let the spin-averaged forward Compton amplitude for a target (charge e, mass mf) be

[T(s)]a&. Then

2e'
Re[T(s)] =[T(m ~)] 1- + ~ v~lnv+O(v~),

where [T(mf )]av is given by the Thomson theorem
(iii) The O(e~) low-energy theorems for the nucleon Compton scattering amplitude for the case of

general scattering angle and other details will be discussed in a later communication.
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