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RESONANT EXCITATION OF PLASMONS IN THIN FILMS BY ELECTROMAGNETIC WAVES*

Andrew R. Melnykt and Michael J. Harrison
Michigan State University, East Lansing, Michigan

(Received 22 April 1968)

The resonant excitation in thin films of bulk plasma waves by incident electromagnet-
ic waves is studied, and is shown to lead to structure in the reflectance, transmittance,
and absorptance.

Anomalous absorption of obliquely incident P-
polarized radiation at the plasma frequency of a
silver film was first observed by McAlister and
Stern. ' The effect, first predicted by Ferrell
and Stern, ' was explained as the excitation of
surface plasma oscillations. ' This Letter shows
that bulk plasma waves can also be excited by in-
cident electromagnetic waves and under certain
conditions their resonant coupling may be ob-
served in the transmittance (T), reflectance (R),
or absorptance (A) spectra of thin metallic (or
semiconductor) films. These resonances are re-
lated to the Tonks-Dattner resonances, ' and oc-
cur when

(A ) =2d/n, n=1, 3 5 ~ ~ ~

where (Xl )n is the normal component of the bulk
longitudinal plasma wavelength and d is the film
thickness.

Consider a plasma slab of thickness d sur-
rounded by vacuum on both sides. Since only ra-
diation with an electric field component normal
to the plasma surface will excite plasma waves,
we consider only P-polarized, plane electromag-
netic waves incident at an angle 8. If we assume
that only transverse waves (kT ET =0) exist in

(n'-P') [1-exp(i2qT) ]
R (n+ P)'-(n-P)'exp(i2( )T

(2)

where

e =~ cosa,

P (q sjn2g)1/2
T )

=n k d=P(d~/c) =P(2wd/A).T T
Here eT is the transverse dielectric of the plas-
ma, i.e. , eT=(c/&u) kT kT, &u is the frequency
of the incident radiation; c the vacuum speed of
light; and p is the normal component of kT in
units of the vacuum wave vector &u/c. Because
they excluded bulk longitudinal plasma waves,
McAlister and Stern' used Eqs. (2) in their theo-
ry.

But if we include both transverse and longitudi-
nal waves in the plasma, the equations for T and
R become'

the plasma and neglect longitudinal or irrotation-
al waves (kl x El =0), we obtain the usual Fres-
nel equations for T and R:

F 4nP exp(ig )

T (n+ I-'I)'-(n —P)' exp(i2& )T

4n{y[1-exp(i2$ )]exp(i( )+P[1-exp(i2t/ )]exp(ig' )j 2
T L I. T

[1-exp(i( ) exp(ig )]'gD-[exp(ig )-exp(ig )]'BCT i. T
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where

A =o-p-y, 8 =at-p+y, C =n+ p —y, D=o.'+ p+y,

b. =[1-exp(ittt ) exp(ig )][D -A'exp(ig ) exp(ittt )]-[exp(it/r )-exp(i' )][B'exp(ig ) C—~exp(i' )]T L T

/ck (2ttd

and

y= sin'8[1-e ](ck /&u)
n

(ckI /td)tt is the normal-component wave vector
(in units of ~/c) of the longitudinal wave, whose
dispersion relation kl(~) is given by eL(kl. , e)
=0, eL being the longitudinal dielectric. Thus T
and R are easily determined if the dispersion re-
lation of both waves is given. Note that expres-
sions (3) reduce to (2) when y, exp(it(1. ) -0.

To see the qualitative behavior of Eqs. (3) we
approximate the dispersion relations by

(ck P(u)' = e = I-((u /td)',T p

(4)

where vF is the Fermi velocity of the electrons
in the metallic plasma. From Eqs. (4) we see
that AL «~T, A &A. T; so for d(Xp, where ~p is
the vacuum wavelength at the plasma frequency
gtIt = 2ttc/tdp), we can make the approximation

exp(i' T) =1 and Eqs. (3) become

a'(I+cosg )L
u'(I+cost(t )+y'(I-costtt )'

L L

y'(I-cos& )L
n'(I+costt )+y'(1-cosg )

'

L
(5)

In obtaining (5) we have assumed o.'and y to be
real; i.e. , we have assumed undamped waves.

Since y(o. except when ar =&dp, Eqs. (5) show
that most of the energy is transmitted except
when costttl. = -1, or when the condition given by
Eq. (1) is satisfied. In other words, the reflec-
tance (transmittance) has a relative maximum
(minimum) whenever the slab thickness is equal
to an odd number of half wavelengths of the lon-
gitudinal wave. Near ~p, where y) n a broader
maximum (minimum), corresponding to a sur-
face wave, is superimposed on these resonance
maxima (minima). At frequencies so close to &dp

that Af &d we may approximate exp(itttL) by 1

+i/i and Eqs. (3) reduce to

2

T=
2 at iyg- 2E 2

2c -i(2ttd/A)(sin~8/cos8)(1-e )

iyttt

R=
2e-iyg

i(2ttd/A)(sin'8/cos8)(1-e )T
2e -i(2wd/A)(sin28/cos8)(1-e )

It: is interesting to note that Eqs. (5) are almost identical to the corresponding expressions in the Mc-
Alister and Stern paper, ' despite the fact that their expressions came from the approximation exp(itttT)

+ ~T beca"se &T &d; while in our expressions we neglected the effect of the transverse wave [p.T
»d so exp(i(T) = 1] and considered the effect of long-wavelength (AT &d) longitudinal plasma waves.

e have numerically computed both the Fresnel expressions (2) and Eqs. (3) for T and fI using dis-
persion relations numerically solved from the standard expressions for the dielectric components of
a plasma,

(d 3 1+@
E' =1-
T (u((a+i/r) 2a' a

tan 'a-1

[&u /td(td + i/w)](3/a )[1-a ' tan 'a]
=1-

1+i/tdr[1-a 'tan 'a]
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correspond to a weaker dependence of plasma
frequency on wave number than that given here;
such real metal effects could modify our conclu-
sions concerning the resonant peaks, but we
have adopted a free-electron model because of
its analytical simplicity and utility as an exam-
ple.

In conclusion we wish to point out that Eqs. (3)
are quite general and apply to any system pos-
sessing longitudinal electric polarization waves
which are noninteracting with the transverse
electromagnetic waves. Thus, for example,
they may be applied to a polar crystal such as
an alkali halide which possesses a longitudinal
optic mode.
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ANGULAR-CORRELATION FUNCTIONS OF DIATOMIC ROTATORS IN ALKALI HALIDES
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For the first time, angular-correlation functions of diatomic rotators in solids have
been determined experimentally using vibration-rotation spectra. As samples we used
QH and OD in KCl. Maxima and minima of the correlation function show an isotopic
Stllft.

Random rotation or tumbling of diatomic mole-
cules in gases, liquids, or solids represents a
stationary process. ' In accordance with the theo-
rem of Wiener and Khintchin, the angular auto-
correlation function can therefore be calculated
as the Fourier transform of the normalized ab-
sorption observed in the rotation spectrum or the
vibration-rotation spectrum. For the vibration-
rotation spectrum, the angular autocorrelation
function is given by

i I(cu) coscutdcu = (u(0)u(t)) cos(coot)

= 3(cosB(0) cos&(t)) cos&uot,

where 1(&u) indicates the normalized absorption,
~0 the frequency corresponding to the vibrational
transition, and

u(t) = [sin0(t) cosy(t), sin8(t) sing(t), cos&(t)]

the unit vector in the direction of the oscillating
electric dipole. This equation has been derived
by Gordon' and Brot' for liquids and gases. The
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correlation functions evaluated from our spectra
of HCl and HBr in CC14 are in good agreement
with those of CO in CC14, C,H,4, etc. , determined
by Gordon' from spectra of Josien and Bulanin. '

The rotation or tumbling of OH and OD in
alkali halides has been observed by dielectric re-
laxation, ' and ultraviolet and infrared spectros-
copy. ' All measurements indicate a strong influ-
ence of a cubic crystal-field potential acting on
the diatomic molecule as described by Devon-
shire' and Sauer. ' Therefore we expected to find
a special behavior of the angular-correlation
functions of diatomic rotators in crystal fields.
We have measured the vibration-rotation spectra
on OH and OD in KC1 near 3700 and 2700 cm
at room temperature. The corresponding auto-
correlation functions, superposed by the vibra-
tional decay function, are shown in Fig. 1. Group-
theoretical considerations demonstrate the appli-
cability of the above correlation functions for ro-
tators in liquids and in local fields of cubic sym-
metry. " For short times (t&0.5x10 "sec) the


