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A new technique is introduced which provides a unified formalism for treating diffu-
sion-controlled reaction kinetics in a discrete lattice. Illustrative calculations are pre-
sented for vacancy-interstitial reactions in a fcc lattice.

Diffusion-controlled reaction kinetics were
first treated by Smoluchowskii. ' His treatment
has been extended and applied in a number of
fields, but we will be concerned with radiation
damage where such an approach to the recombin-
ation kinetics of vacancy-interstitial (Frenkel)
pairs was first employed by Fletcher and Brown. 2

The theory was developed in a unified, closed
form by Waite, 3 whose work has been extended by
others. ' The theory, particularly in the Waite
form, has found a number of applications in both
semiconductors'y ' and metals, '~'~' ~ with
probably the most extensive test coming in cop-
per. ' ' ' " The Waite theory, and its deriva-
tives, has the deficiency of being a continuum
theory, whereas the experiments are on discrete
lattices which exhibit well-resolved recovery
stages. 2' Thus the theory has limited utility in
aiding in the identification and the understanding
of specific defect configurations and recovery
mechanisms. Moreover, the theory employs a
spherically symmetric function for the distribu-
tion of the interstitial about the vacancy, where-
as numerous experiments indicate an anisotropy
in the damage threshold and production rate22
which should be manifest in the distribution func-
tion of the interstitials as well. Further, an im-
portant parameter obtained from fitting the theo-
ry to experiment, the volume about a vacancy

for the capture of interstitials, seems too
large' ~' 4~ "7~~0~~4 (containing well over 500 lattice
sites) in view of both the calculation by Johnson, "
which gave a capture volume of less than 50 lat-
tice sites, and the observation of relatively few
recovery stages due to bound vacancy-intersti-
tial pairs. 2'

In this paper we consider a new computational
technique and demonstrate its use in treating dif-
fusion-controlled reaction kinetics in discrete
lattices. For convenience, but with no signifi-
cant detriment, we consider the vacancies im-
mobile and the interstitials the mobile defect.
We let C be a vector, m the ith component of
which, C;, will be the concentration of intersti-
tials at the ith site about a vacancy site; (Cz)0
will be the initial distribution. We let P be the
matrix whose components Pji are the probabili-
ties per time increment for transition from the
ith to the jth site, ~'~ where the time increment
(which we refer to as a "jump") is chosen so that
the I'ji are conveniently small. The absorbing
boundary condition at the sites on the surface of
the vacancy capture volume requires P&i —=0 for
transitions out of the capture volume. Next we
establish a hierarchy of difference equations:
After the first jump the concentration vector is
Cg P Cp the second jump, Cm

= P Cy P Cp ~
~ ~ ~

C~= P~C0. Thus far we have simply described
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the well-known matrix technique for handling
Markov processes. ~~ Fletcher and Brown ~

'
in essence used this approach to treat the kinet-
ics of the correlated recovery process, that is,
recovery in which the interstitial recombines
with its own vacancy. 32

In general, this recovery exhibits the hallmark
of diffusion processes —an initial Et dependence
—and is independent of the total concentration of
defects. (In this concentration independence, and
in this only, correlated recovery kinetics resem-
bles first-order recovery kinetics. )

In this form the matrix technique cannot treat
the process where the interstitial "escapes" from
its own vacancy and recombines with a "foreign"
vacancy —the uncorrelated recovery. ' Physically
this deficiency is due to each vacancy being
treated independently; mathematically it mani-
fests itself in the linearity of the terms P»C& in
the difference equations.

We may readily modify the matrix technique to
correct this deficiency. We employ a finite ma-
trix as above. The first l sites belong to the va-
cancy's capture volume; the next k sites are the
sites in the correlated recovery volume; then ad-
ditional vector components are added for the un-
correlated recovery, one for each physical pro-
cess which occurs. For the latter processes we
require that the P&, be such that the difference-
equation terms have the correct physical depen-
dence. Thus for the bimolecular recovery char-
acteristic of uncorrelated vacancy-interstitial
annihilation, the pertinent P&z for return to the
correlated region are proportional to the concen-
tration of interstitials in the uncorrelated region
and so on for interstitial agglomeration, trapping
by impurities, etc.33 Since the progress of the
recovery is followed as a function of time, or
"jumps, "by successive matrix multiplications,
this modification of the matrix technique re-
quires only that the special P&, be recalculated
before the multiplication is carried out, which is
a trivial additional step for the computer. The
major computational hazard in this type of calcu-
lation is "round-off errors, " but, with modern
computers, test calculations for known simple
kinetics can readily demonstrate that this is a
surmountable problem.

Figure 1 shows the results of illustrative cal-
culations of vacancy-interstitial reactions in a
fcc lattice. (C* is the concentration of intersti-
tials outside the capture volume. ) The curves
show an initial correlated recovery, then a pla-
teau corresponding to the asymptotic escape from
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Flo. ]. The results of illustrative calculations of
vacancy-interstitial reactions in a fcc lattice. The
curves refer to different vacancy capture volumes and
interstitial distributions. (C* is the concentration of
interstitials outside the capture volume; N is the num-
ber of jumps. )

the correlated region, '4 followed by bimolecular
recovery (the only uncorrelated recovery includ-
ed in these calculations). These and other calcu-
lations show that for a given lattice, the shape of
the correlated recovery and the height of the pla-
teau are determined mainly by the size and shape
of the capture volume surrounding the vacancy
and by the distribution of the interstitials with
respect to the vacancy; the larger the capture
volume and the closer the interstitials are to the
capture surface, the fewer the interstitials that
escape the correlated region.

The modified matrix technique provides a com-
pact formalism for treating a large number of
nonlinear coupled differential equations and as
such should be readily applicable to a variety of
complicated kinetic problems. Here we have
shown that it is a unified technique for treating
correlated-uncorrelated recovery kinetics in a
discrete lattice.
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Column and row vectors are transformed where nec-
essary.

The characterization of the sites is determined by
the topology, or connectivity, of the lattice. In a sim-
ple lattice, topologically inequivalent sites can be sim-
ply enumerated versus radial distance from the origin.
In more complex lattices, sites at the same distance
may not be equivalent.

If required, a vector component could equally well
represent the concentration in a collection of sites,
e.g. , the sites in a shell about the radius. In this case
the P&~ reflect the transitions for the whole shell. Care
must be taken, however, since simple enumeration of
the sites associated with a shell can lead to spurious
results in the recovery.
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We show that the symmetry of bound electron states in GaP depends upon the choice
of origin for the group operations and hence upon the location of impurity in the crys-
tal lattice. This provides an explanation of the discrepancy between the high radiative
efficiency associated with group VI donors and group V isoelectronic centers and the
low efficiency of group IV donors (Si) in GaP.

Shallow donor states may be introduced into
GaP by S, Se, or Te impurities substituting for
a P atom or by Si and (possibly) C substituting
for Ga. ' Both types of impurities contribute ex-
trinsic electrons. ' However, high radiative ef-
ficiencies —from donor-acceptor pairs~ and do-
nor-to-valence band transitions' —have been re-
ported only for donors located on P sites. Strong
emission has been observed from donors on Ga
sites only when a deep impurity state is involved. y'

In addition, numerous neutral centers occur on P
sites and produce strong emission and absorp-
tion, ' while no such centers on Ga sites have
been identified. It is the purpose of this Letter
to point out that the selection rules which govern
these radiative transitions can be predicted on
the basis of the band symmetry alone.

We show that for valleys at the zone edges the
representation X, or X, to which the conduction
band minima belong depends upon the choice of
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