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Large quantum oscillations are observed in the thermoelectric emf in metallic tin at
1.3'K. These are correlated with magnetoresistance structure due to magnetic break-
down.

We recently reported anomalous Shubnikov-de
Haas amplitudes in metallic tin. Extremely
large amplitudes appeared at +3' and at ~22
from [001] in the (110) and (100) planes. All oscil-
lations were shown to be from the 36,' section of
the Fermi surface. '~' In the present Letter we
report seeing these, and additional anomalies in
the thermoelectric emf (Figs. 1 and 2). These
anomalies are marked A, B,C, and A', B', C' in
Figs. 1 and 2. All anomalies correlate with
structure in the magnetoresistance as shown in
Fig. 2.

In Fig. 1 the amplitudes of quantum oscillations
in the thermo-emf are plotted against angle in
the (110) plane. The large amplitudes at +3
and +22 are identical in structure to the anoma-

lies found in the Shubnikov-de Haas effect. ' For
a discussion of the anomalies at +3 see Ref. 1.

From the field dependence of the magnetoresis-
tance, Anderson and Young show that magnetic
breakdown can occur between zone 36,' and zone
four. '~' This occurs at+32 and+22" in the (110)
plane. At +22 we find giant quantum oscillations
in the thermo-emf (Figs. 1 and 2). We conclude
that the opening and closing of orbits on zone
four is governed by phase coherence over the
35, section. This effectively introduces an oscil-
latory scattering time which causes the large os-
cillations seen at A and A'.

Anomalies B and B' (Figs. 1 and 2) are unusual
in that they are strong dc emf's. That is, quan-
tum oscillations at these angles do not have un-

4HV/K

QUANTUM PSC ILLATION

AMPLITUDES ~ ~ ~

D C THERMOEMF

I

V
LU

P e-
ra
EC

X
I

g 1

I
I

I I

I

O
I

I

I

I

Io

c
I

44 4036 3228 24 20 16 12 8 4 0 4 8 12 16 2C)24 28 32 364044
D EG R E E S I N (1 10} P L A N E

FIG. 1. Thermoelectric emf for the field H in the (110) plane of tin near 32 ko and 1.3 K. Solid lines are quan-
tum-oscillation amplitudes. Dashed lines are nonoscillatory emf s. The adiabatic thermoelectric coefficient is
proportional to the thermo-emf, and at B for example, has a value of 10 pv cm/W.
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FIG. 2. Correl
with ano

lation of magnetoresistance t tus ruc re
anomalies in the thermoelectric emf. The emf

and resistance are lop tted as a continuous function of
angle at 32 kG and 1.3 K.

usually large amplitudes. Th f'e em s grow lin-
early with field strength and appear at the
where Anderson

ear a e angles
n erson and Young found magnetic break-

down influencincing the magnetoresistance. It isn' t
certain how magnetic breakdown could cause this
anomal . A ly. arge thermo-emf indicates a strong

scattering mechanism.
Our anomalously large quantum amplitudes at

C and C in Figs. 1 and 2 are about 8' outside the

down. The presence of these amplitudes sugge t
istence of a mechanism similar to that

causing A and A'.
Anomalies similar to the one bones a ove occur in

some nonsymmetry planes where the field assese ie passes

agne oresistanceBoth thermoelectric and magn t ' t
voltages were measured with a dc a l'fmp l ver.

emperatures ranged from 1.3 to 4.2'K, and
ields ranged from 15 to 32 kG. The

which the ano
e angles at

w ic e anomalies occur are independent of
temperature and field. All anomalieanoma ies grow rap-
i y wi field and decreasing temperature.
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MICROWAVE ACOUSTIC AMPLIFICA TION IN n-InSb AT 9 GHz
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Amplification of 9-GHz longit d' longi u inal acoustic waves ha
a p se electric field. The am l'f'

the me
e een e conduction electrons and the

e mean free path is greate th thr an e wavelength.
the acoustic wave since

Acoustic amplification has been observed at 9
GHz on applying a pulsed electric field to n-InSb
at 4.2'K. In these eexperiments we achieve l & 1
where is theq acoustic wave vector and l is the
electron mean freeee path. Hence the amplificat'
results primaril frri y from a resonant interaction of
the conduction electrons w th thi e acoustic wave
a process distinct from th lle co ision-dominated
process responsible for the familiar CdS acous-
tic amplif ication.ica ion. In these experiments at 9 GHz
the momentum of the acoustic hon
arablp ra e with the mean thermal electron momen-

turn ~vp The ref ore, the re sonant ele ct
not those trave

n e ec rons are
raveling in synchronism with th

as in the classic
wi e wave,

ssical Landau damping case but
rather electr
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the velocit of s
ons which travel much fa t haasert n

oci y of sound and which undergo B
scatteri

rgo ragg

tion
ing by the acoustic wave. Th ' te in erpreta-

from a

'
n of the amplification for l &1q & as resulting

rom a p onon maser process'~' remains valid

turn s ce c
or Q' mvp&1, although the re iregions of momen-
um space corresponding to initial and final

states of the reso
altered. This is

nant electrons are cons'd bli era y
is is the first observation of this res-
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