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of Ref. 2 used in Ref. 3. Neither Ref. 2 nor fit
(Y-IV)pp+zp has made use of the Saclay mea-
surements.

The difference in the quality of fit between the
dashed curve and the full one may be partly acci-
dental but the fact that the Livermore curve is
systematically high appears unlikely to be explic-
able that way. The ratio of chi-square values
corresponding to the two fits is 2.85/0. 76 = 3.7.
The normalization factor which in the Yale nota-
tion' is Agj is 1.0036 and its effect on y' is a fac-
tor =1-0.0013. Systematic differences in the
scale of the expected and observed P(g) are thus

practically absent in the case of (Y IV)pp+~-p.
The degree to which this is the case is doubtless
accidental but the Saclay measurements indicate
that the spin-orbit interaction is well represent-
ed by the last mentioned fit at 20 MeV inP-P
scattering. The comparisons made above indi-
cate the desirability of ascertaining the reason
for the difference between the Berkeley' and the

Saclay' experimental results.
The authors are grateful to Mr. John M. Holt
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runs.
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DIFFRACTED W'AVE FIELDS EXPRESSIBLE BY PLANE-WAVE EXPANSIONS
CONTAINING ONLY HOMOGENEOUS WAVES~
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A comprehensive study of the properties of "source-free" wave fields (i.e., diffracted
wave fields expressible by plane-wave expansions containing only homogeneous waves)
is summarized. The theorems proved in the study are stated. A new series mode ex-
pansion for "source-free" wave fields in included.

Although the wave fields herein called "source-free" wave fields' have played an important role in
the theories of propagation and diffraction of monochromatic, scalar waves for nearly two decades,
their unique properties have not been studied in detail. Recent advances " in the diffraction theories
of imaging and holography have indicated a need for improved understanding of these fields. "Source-
free" wave fields are important because (1) most scalar wave fields that occur in diffraction theory
can be approximated by "source-free" wave fields in regions of space far from sources, and (2) "source-
free" wave fields can be treated by much simpler mathematical techniques than can other fields. In
the vicinity of a source, however, it is important to distinguish between "source-free" wave fields
and wave fields that are not "source-free" since the behaviors of these two types of wave fields differ
greatly in the vicinity of a source. Hence, indiscriminate use of "source-free" wave fields in the
study of images of sources can lead to erroneous results. The results of a recent study of the proper-
ties of "source-free" wave fields are summarized here; a comprehensive treatment, complete with
rigorous proofs of the theorems, will follow.

Consider a wave field u(x, y, z) expressed by the angular spectrum representation"

„(„y z) = ff" ~(p, q)H(p, q, x, y, z)dpdq for z) 0,
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where

B(p, q, x, y, z) = G(P, q, z) exp[2mz(px+qy)],

G(P, q, z) =exp(2xi )k-p2-qm)'~~z) for p2+q2 ~k2,

G(p, q, z }= exp(-2w (p' +q'-k' [
'I'z ) for p2 + q2 & k'.

(2)

(3a)

(3b)

k is equal to k/2w, k is the propagation constant of the field, and the angular spectrum E (p, q) is a
square-integrable function that characterizes the field. The validity of this representation has been
discussed by Montgomery' and by Lalor. '4 It can be shown that if E (p, q)gL, and if u(x, y, z) is given

by (1) for z &0, then for z &0, u(x, y, z) is continuous with respect to each variable x, y, z and has par-
tial derivatives of all orders continuous with respect to each variable. Moreover, u(x, y, z} satisfies
the Helmholtz equation

g2g +g2g 0

for z &0 and the boundary condition

Iimu(x, y, z) =f(x, y),
z-0

where f (x, y) is the inverse Fourier transform of E(p, q) given by

f (x, y) = lim f pf EE (p, q) exp[2vi(px+qy)]dpdq
P P

P» QQ

(6)

and lim means the limit in the I., norm. "
Equation (1) expresses u(x, y, z) as a superposition of plane waves B(P, q, x, y, z) with amplitudes

E (p, q). The branch of the square root given in (3) is the appropriate one to use when the sources of
the field are confined to the region z «0. The plane waves are called homogeneous when p'+q' «0'
and inhomogeneous or evanescent when p'+q'&O'. Since the inhomogeneous waves decay exponentially
as z increases, they are frequently neglected in theoretical studies, and the integration in (1) is car-
ried put pnly pver the region p +q «k .

Let u(x, y, z) be given by (1) for z &0 with E(p, q)&L, and let f(x, y) be given by (6). We say that
u(x, y, z) is "source free" if and only if E(p, q) vanishes almost everwhere for p'+q'&O'. Then, the
following results are ture.

Theorem I.-If u(x, y, z) is source free, then

lim u(x, y, z) =f (x, y) .
z-0

Theorem II.-If u(x, y, z) is source free, (1) can be used to extend u(x, y, z) into the region z ~ 0 to
obtain a continuous, bounded solution of (4} for xll space.

Theorem III.-For given f{X,y)&L» u(x, y, z) is source free if, and only if, f (x, y) is equal almost
everywhere to a function fo(x, y) that can be extended to the whole space of two complex variables X=x
+ix', Y=y+fy' as an entire function fo(X, Y) such that

[fo(X, Y})4A exp[k(x. "+y")' ']
where x', y' are real variables and A is a positive constant.

Theorem IV. -Equation (1) can be used to extend u(x, y, z) to the whole space of three complex vari-
ables X=x+ix', Y=y+iy', Z=z+iz' as an entire function u(X, Y, Z) such that for constant z'

(10)

(u(X, Y, Z) J B~xep[k(X" +v'2)'"] (9)

(where x', y' are real variables and B is a positive constant that can depend on z'), if, and only if, u(x,
y, z) is source free.

Theorem V.' -On planes of constant z, the two-dimensional autocorrelation function

p(], q, z) = ff u(X, y, z)u~ g, y+g, +)d zdyx
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of u(x, y, z) is independent of z &0 and for all real $, g if, and only if, u(x, y, z) is source free. (The
asterisk indicates the complex conjugate operation. )

Theorem VI.'7 —Let F (p, q) G(p, q, z)&1., for z & -K where K is a positive constant, and let u(x, y, z)
be given by (1) for z - -K Then the field u'(x, y, z) given by (1) for the boundary condition

lim u(x, y, z) =j*(x,y) (11)
g-0

is u'(x, y, z) =u*(x, y, -z) for all z & 0 if, and only if, u(x, y, z) is source free
Theorem VII .—If F (p, q) =0 almost everywhere for p'+q' & (0-5)' and some 5& 0, then u(x, y, z)

can be expressed by the series mode expansion

a
mn

u(x, y, -) =

0(2 ')
H(P, q, x, y, z)

m n
BP Bq

where

a
mn

m+n
8 „j(x,y)

ppl In ~x 8$ p=q=0

Discussion of the significance and interpretation of the results given in the theorems is deferred to
the more comprehensive paper to follow.

Equation (12) can be used to represent wave fields that cannot be expressed by (1) or any of the usual
diffraction formulas. The series in (12) is absolutely and uniformly convergent for all x, y, z if j(x, y)
C B where B is the space of all functions j(x, y) that can be extended to the whole space of two complex
variables X=x+ix', Y=y+iy' as an entire function j(X, Y) such that

y(X, Y) i-Aexp[(k-5)(~x~2+ ~
Y~z)~~&]

for some 5&0. If j(x, y) gB, the series in (12) can be rewritten in the form of a Taylor series in

x, y, z and in the form

(14)

B,"'(kz) -z
u(, y, z)=(-,'wkz)' g " ', —„n.,"j(x,y},

n=0

where &2n is (s2/ax2+s2/ay2)" expanded with a'/ax and s'/By' treated as algebraic quantities and
~h~~~ H„~ "'(kz) is the Hankel function of the first kind. The series in (15) was derived earlier by
»emmer' and recently by Lalor'; different approaches were used. Our results show that (] 2) and
(15) give a vaild solution to (4) and (7) for all j(x, y) g B.

*Preliminary results of this study were presented at the Spring Meeting of the Optical Society of America held in
Washington, D. C., March, 1968 IAbstract WF12, J. Opt. Soc. Am. 58, 719 (1968)].

~"Source-free" wave fields are defined later m the text. The terminology "source-free" was chosen because a
source-free wave field can be extended as a wave field in all space with no sources anywhere (even at points infin-
itely far away). See Theorem II.

2E.g. , see the classical papers, H. G. Booker, J. A. Ratcliffe, and D. H. Shinn, Phil. Trans. Roy. Soc., Ser. A
242, 579 {1950);J. A. Ratcliffe, Rept. Progr. Phys. 19, 188 (1956); E. %'olf, Proc. Roy. Soc. (London), Ser. A
253, 349 (1959).

3E. Lalor, to be published.
4E. Lalor, "A New Approach to the Inverse Diffraction Problem" (to be published).
R. Mittra and P. L. Ransom, in Polytechnic Institute o Brooklyn Microwave Research Institute Symposia Series

(Polytechnic Press of Polytechnic Institute of Brooklyn, Brooklyn, N. Y., 1967), Vol. XVII, p. 619.
W. D. Montgomery, J. Opt. Soc. Am. 57, 772 (1967).

~W. D. Montgomery, to be published.

763



VOLUME 21, NUMBER 11 PHYSICAL REVIEW LETTERS 9 SEPTEMBER 1968

8W. D. Montgomery, "Diffraction Due to a Finite Energy Source" {to be published).
'G. C. Sherman, J. Opt. Soc. Am. 57, 1160 (1967).

~OQ. C. Sherman, J. Opt. Soc. Am. 57, 1490 (1967).
~~E. Wolf and J.R. Shewell, Phys. Letters 25A, 417 (1967), and 26A, 104(E) (1967).
J.R. Shewell and E. Wolf, to be published.

~3All integrals are Lebesgue integrals. For thorough discussions on the application of the angular spectrum in

diffraction theory, see the references in footnote 12 of Ref. 10.
~4k. Lalor, to be published.

For an introduction to the theory of Fourier transforms of functions in L2, see E. C. Titchmarsh, Introduction

to the Theory of Fourier Integrals (Oxford University Press, London, England, 1937), Chap. III.
~~The qualitative statement of the result of this theorem is due to Booker, Ratcliffe, and Shinn (see Ref. 2). A

rigorous statement and proof of the theorem for arbitrary E(p, q) &L2 has not been given previously.
~~The qualitative statement of the result of this theorem is due to Mittra and Ransom (Ref. 5) and is given in Ref.

12. A rigorous statement and proof of the theorem for F(p, q)Q L2 has not been given previously.
H. Bremmer, Physica 18, 469 (1952). Also see H. Bremmer, in Air Force Cambridge Research Center Report

No. AFCRC-TR-59118, Pt. II (unpublished).
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It is shown that one conventional interpretation of the success of current-algebra re-
sults requires the pion Regge trajectory to choose the Toiler quantum number M =0 at
zero energy.

There has been speculation that the Toiler
[O(3,1)] classification of the pion Regge trajecto-
ry gives restrictions on the Regge residue func-
tions which can be compared with certain predic-
tions of current algebra. & The purpose of this
note is to show that one conventional interpreta-
tion of current-algebra results requires the pion
trajectory to choose the Toiler quantum number
M =0.' The converse is not true; the M =0 as-
signment enforces no constraint, current algebra-
ic or otherwise, on amplitudes involving pions.

We consider first the possibility that the pion

trajectory belongs to an M = 0 or M = 1 conspiracy
class. 2 The P=(-1)~+1 (pion) member of the
conspiracy contributes to the t-channel reac-
tions, KN-(Tm, ' or NX- pm with zero-helicity
p's, through an amplitude which we denote in ei-
ther case by f»»/2 «. As t approaches zero in
either reaction there is a conspiracy condition, '

f, , (s, t)

-(i/sine )f, , 0 0(s, t) -Kt.
2s 2t s

One can easily see that in either the M =0 or the
M =1 case the term involving f»2 1» «has no
s/2 contribution. ' Thus, the amplitude f»2 «, «1
behaves like t2s& for large s, small t. This
leads to a behavior of the residue function for

small t of the form

NN pm or om
Pl/2~1/2 0 0( ) Pl/2~1/2 PO~O

1 1--2e+ —,

1: p1/2 1/2 Collat;

M =0: P1/2 1/2
-

V t.

Thus, we read off the maximal behavior of the
residue function in the ow (or pw) system as

(3)

1 1

M = 1: P0 0(t) - t

1

M=0: P, ,(t) -t
Next we imagine a limit in which the pion mass

approaches zero. In the limit a(0) -0 and t-0
the P functions in (4) become the actual a,mpli-
tudes for mn - a and n~- p, in our world in which
(at least) one incident 2 has zero mass. We see
that for the M =1 case the amplitudes vanish as
the pion mass; for the M =0 case they remain

At the equal-mass ÃN vertex the normal cou-
plings are known from O(3, 1) consideration for
the P = (-l)~+ 1 part of the M = 0 and M = 1 traj ec-
tories:


