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It is shown that the variation of electric potential with current density in superconduc~
tors depends on the band structure of the metal concerned and, contrary to the predic-
tion of the free-electron model, can take either sign. At absolute zero the size of the
effect can be calculated from the band structure alone, but its temperature variation is
connected with the dependence of the order parameter on current density, and is harder

to obtain.

In a recent Letter, Bok and Klein' report ex-
periments in which they observe variations of
the electronic work function for a superconduc-
tor due to the kinetic energy of the electrons in
the current-carrying state. It is the purpose of
this Letter to point out that the agreement which
they obtain with a free-electron two-fluid model
is surprising, for we shall show that the observed
potentials depend on the detailed band structure
of the metal concerned. In particular there is no
reason to expect that the “penetration depth” de-
duced by their method should be close to the ex-
perimental value. We shall show that a form of
compensation can occur in which the voltages ob-
served may even reverse in sign.

In a superconductor the total chemical potential
(the electrochemical potential), given by

u=uc+eV, (1)

where [, is the chemical potential referred to
the local zero of the band energy, must be the
same everywhere, even in the current-carrying
state. In order to calculate u,, Bok and Klein
use a hydrodynamic model in which

uc=u0+%mvsa, 2)

where L, is the chemical potential when no cur-
rent flows and vg is the velocity of the superfluid.
(We have changed their notation slightly.) In-
stead of using a hydrodynamic model, we use a
BCS model in the local electrodynamic limit and
obtain a new relation between chemical potential
and pair momentum which takes the band struc-
ture into account and replaces (2).

When a current is introduced into a supercon-
ductor there is, according to the BCS picture, a
sideways shift of the occupied states in % space.
We can describe this by saying that the Fermi
surface (or more strictly the “gap surface,” the
surface on which #z*=vp?=3) has moved. The
one-electron states are still occupied in pairs,
but their mean % vector now takes a nonzero val-
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ue d, which for energetic reasons must be the
same for all pairs. For a general band struc-
ture, however, the new gap surface will not be
obtained from the old one merely by a transla-
tion q, because it may be possible to reduce the
energy of the system by redistributing the elec-
trons around the surface while maintaining the
pairing. To take account of this, we assume that
the new surface can be obtained from the old one
by a translation d and a relaxation through a sec-
ond vector normal to the surface, 6, whose mag-
nitude will vary with position but must be the
same on opposite sides of the surface to main-
tain the pairing (see Fig. 1).

We then identify the new surface by applying
the conditions (a) that the density of electrons
must be conserved, and (b) that on the new sur-
face the energy associated with the occupation of
a given pair of states must be the same for all
states.

The change in energy of a normal one-electron
state on the gap surface produced by the displace-
ment is

- 1
o€ = ei(qi + éi)+ zeij(qi + Gi)(q].+ 5].), (3)
where
=9¢/0k .=V~ =Va. Vs
€ €/ kz, €, i v 'ka’

and we have expanded to second order in (q+ 3).
We now assume [see (1) below under “Notes”]
that the change in the energy associated with the
occupation of a given pair of states in the conden-
sate is

a = (8¢, + b¢,), (4)

which by condition (b) must be the same for all
pairs. Remembering that 6 must be second or-
der in d, we have to order ¢*

1 1 1
20=€,0,.+3€. gq.=hv _b+3€.q94.
2 5% l]qlq] Ve +z€z.]qiq], (5)

since 6 is parallel to Vi(€). Dividing by 7y, in-



VOLUME 21, NUMBER 2

PHYSICAL REVIEW LETTERS

8 JuLy 1968

relaxed \

surface

/ \
/ \
[ )
\- ——
/N /
unrelaxed
surface

FIG. 1. The vectors § and & which carry paired one-
electron states on the original gap surface into paired
states on the new gap surface.

tegrating over the Fermi surface, and using con-
dition (a), we find

a=fs

But a, the change in the pair energy at the gap
surface, is simply 26(u.), so that the change in
contact potential is

(€ijqiqj/th)dS

) (6)
s(l /th)dS

1 (ei],qiqi/th)dS

V-2 Js s(l/ﬁvF)dS : )

The current density of the new distribution is

T = o @ vi(elas, ®)

so that the experimentally measured quantity V/
J% is given by

K_ (4m3)y? fs(th)""eijqz,qde
2 2e° fs(th)“dS{fs(VF-q)dé}z 9)

For the common case of cubic symmetry, the
denominator is independent of the orientation of
the crystal axes with respect to , so that for a
random polycrystalline aggregate the numerator
may be averaged over orientations to give

v (127 fs(h'vF)"VT:(e)dS

Ji ~ 6ed ]S(ﬁvF)-lds(f stds}z

(127%7%)? ((va*)‘l)

= 3 -1 29 (10)
2¢38° ((UF) ><vF>

where S is the total area of the Fermi surface.
This reduces in the free-electron case to the
usual result,

V/J?%= —m /2n%e®. (11)

A simple situation in which the sign of the ef-
fect is reversed is the case of a Fermi surface
consisting entirely of small spherical pockets of
holes. If we adopt the usual convention for this
case by speaking of the current as carried by
positively charged holes of positive effective
mass m and density », then (10) again reduces to
(11), but the effect is reversed in sign because
of the change in sign of e. In the general case
the sign of the effect is determined by the sign of
the integral containing VjZ(€), since the denomi-
nator is essentially positive.

It is worth pointing out that the condition for
sign reversal in the present case is different
from that for the ordinary Hall effect to reverse
sign, which depends on the topology of the Fermi
surface, but not on the second derivative of e(k).
An interesting case is that of cadmium, whose
Fermi surface is quite close to a remapped free-
electron sphere. The remapping happens to give
it a large hole surface, thus producing a reversed
normal Hall coefficient, but probably has com-
paratively little effect on the second derivative
of €(k) on most parts of the surface, so that the
Bernoulli voltage should have the normal sign.

Notes. —(1) The assumption of Eq. (4) that a is
given by b€, + 6€, may be justified as follows: We
insert the new one-electron energies €,, €, into
the BCS equations and make the usual assumption
that vpj,=const. This gives the standard rela-
tion E? = (e-pu,)?+ A? for the new pairs if we
make the following identifications:

€=3(€, +6), (12)
E, =E+%(€1'Ez); E2=E“%(€1‘€z)’ (13)

where E ,E, are the new excitation energies.
The gap surface is defined by the relation € =y,
S0 we have

Guc=§(del+662)=%a=—eV (14)
as before.

(2) Our argument, which uses a k-space de-
scription of the current-carrying state, is only
valid in the London limit. It is known how non-
local effects such as long coherence lengths and
short mean free paths affect the current response
of a superconductor. Since they change the cur-
rent, they must also change the kinetic energy
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and hence the chemical potential, but we do not know how to calculate this effect, which is likely to be
important in practice.

(3) A further correction to the simple hydrodynamic result comes from the fact that in the super-
conducting state the occupation of one-electron states u?(€) does not drop abruptly to zero at the gap
surface, but falls gradually over a range of energies of order A. If now the density of states near the
gap surface varies with energy, and if A also happens to vary with g, there will be a further change
in the chemical potential somewhat analogous to the shift which takes place with temperature in a nor-
mal metal. We find after some calculation that (6) is then replaced by

€.494. 2w 1\ ( 6(a2) 2d%e\ dS jl
Si?d c _ el
a:[fs e ds'fs (m A ‘2)%(%},)2,} (v2€ dkn2>th Vgt g)mas]™ (15)

for a weak-coupling superconductor. The correc- |
tion term is evidently serious unless

6(A?) <« (ﬁqu)z. (16)

sibility for superconductors. In fact, there is no
unique way of defining the “lattice charge” in a
real metal.

(ii) The argument only applies at T=0. At fi-
nite temperatures some of the electromagnetic
force acts directly on the electronic excitations
and may be transmitted to the surface of the
specimen by collisions (cf. a gas in equilibrium
in a gravitational field).

(iii) The temperature dependence of the effect
could be calculated directly by a natural exten-
sion of our method. The argument leading to (5)
as given in Note (1) is independent of tempera-
ture, and it is only Eq. (8) and the charge con-
servation condition which require modification.
The required modification to (8) which gives the
current density is well known. The charge con-
servation relation must be corrected to allow for
variations in the chemical potential with A and
with temperature, but these can easily be written
down. As discussed above, the only difficulty is
to estimate the dependence of A on { for real su-
perconductors at finite temperatures.

We would like to thank Professor A. B. Pippard
and Dr. B. D. Josephson for helpful discussions.

The change of A with d can be estimated near T,
using the Ginzburg-Landau theory, and in this
regime we find that the correction is always se-
rious. At low temperatures, however, where
there are negligibly few excitations, A can only
change through the & dependence of Vpp:. We
would expect this to be extremely small (Vg is
taken as constant in the BCS model), so that our
original result (6) is probably valid at sufficient-
ly low temperatures.

(4) Bok and Klein argue that in a superconduc-
tor the Lorentz force on the electron fluid cannot
be transmitted to the lattice by collisions, and
must therefore be transmitted by an electric
field. They deduce that the superconducting Hall
constant depends only on the lattice charge densi-
ty and will be independent of temperature. We
would comment as follows:

(i) The argument appears to apply only in a
strictly free-electron model. In a real metal
electromagnetic forces on the electrons may
sometimes be transmitted to the lattice without
the mediation of real scattering processes. (This
is obviously the case in a full band, for instance.) 13, Bok and J. Klein, Phys. Rev. Letters 20, 660
There seems to be no reason to exclude this pos- (1968). -
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